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O Introduction
» Thorium fuel cycle
» Thorium fuel type
» Thorium-based molten salt reactor
» Some design concerns

O Safeguards and non-proliferation

O Salt chemistry and purification
» Major impurities in the primary salt
» Lanthanides fission products removal
» Non-metal impurity removal

O Molten salt corrosion
» Corrosion mechanisms
» Corrosion kinetics
» Carbon and fission products’ effects
» Corrosion control
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] More abundant in nature than

uranium
- In nature, in a single isotopic form
—Th-232

J Th-232 is not a fissile materials,
can not be directly use as fission
materials for thermal reactor

- Th-232 is a fertile materials and
can transmute to U-233 upon
absorbing a neutron, U-233 is an
excellent fissile material.

] Thermal-breeder reactor
] No plutonium production
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TABLE 2.1
CRUSTAL ABUNDANCE OF SELECTED ELEMENTS*

Abundance
Element (g/ton)
Gold 0.004
Silver 0.07
Tungsten 1.5
Molybdenum L5
Uranium 1.8
Thorium 7
Lead 13
Copper 55
Zinc 70
Iron 50,000
Aluminum 81,300

Z

92

91

90

4

N

“Source: B. Mason, Principles of Geochemistry, 3rd ed., John Wiley & Sons, New York (1966).
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O Solid fuel (Thorium Oxide)
» It is harder to fabricate

» Do not have much experience
O Liquid fuel (Thorium Fluoride)

» No fuel fabrication issue
» Have experience

O Thorium Fuels need a fissile
material as a “driver’ to maintain

the “Chain Reaction”
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O LFTR=Liquid Fluoride Thorium
Reactor

» Blanket Salt: LiF-ThF,
» Fuel Salt: LiF-BeF,-U(233) fluoride

U-233

Blanket salt Fuel salt

Neutron
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Safety

Reactor

Safeguards
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Security

Risk arising
from unintended
events
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Th-fuel cycle should have higher proliferation resistance that U-Pu
cycle (no Pu problem)

The fissile inventories of a MSR are lower than in other reactor system
(no spent fuel except at the end of life a reactor)

U-233 can be weapon materials, however, obtaining the critical mass (8
kg U-233) requires the extraction of lots of salt (the concentration of U-
233 in the salt is low)

Self-protection (U-233 is always together with U-232 with has a very
strong gamma ray emitter)

Diversion if very difficult in U/spent fuel management/storage (the
amount of radioactivity by fission products and U-232 is large enough
to prevent any diversion)

Separation Pa-233 is possible, however, Pa-233 only has a half-life of
27 days. (if the waste is safe for a short term, weapon materials won't
be an issue)

Nuclear Materials and Fuel
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L Homogeneous fuel (because of using liquid fuel)

L Combination system of a reactor and a processing plant (because of
the on-line fuel treatment including salt chemistry control)

O Low content of actinide materials (because of large amount of molten
salt and low concentration of fissile materials)

O High temperature (the operation temperature can be higher than 700
OC)

L Extreme high radioactive (Most of radioactive inventories are in the
salt)

L No discrete fuel elements (combined with continuous transmutation
prevents simple accounting)

O High salt melting temperature

Nuclear Materials and Fuel IIVirginiaTech
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 Traditional safeguards approaches can not be
directly applied to MSRs

U Innovative approaches are needed

 Safeguards by design (safeguards provisions and
features are taken into account and designed into the
facility from the very beginning of the design process,
If SBD is applied, it will significantly improve
safeguards assurances and avoid costly and time
consuming redesign work)
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Tritium: Helium-hydrogen sparging, membrane reactor (Pd-Ag), double-wall
heat exchanger)

Noble Gas: sparging with inert gas, followed by adsorption onto a charcoal
filter)

Halogens (iodine): HF-H, sparging followed by accumulation in KOH solution
Alkaline Metals: Liquid/liquid extraction using Bi-Li, electrochemical separation
Rare Earths: Liquid/liquid extraction using Bi-Li, electrochemical separation,
cold trap

Noble Metals: Liquid/liquid extraction using Bi-Li, electrochemical separation.
Tellurium and Antimony: Plating out, electrochemical separation if in the form
of tellurides and atimonides

Actinides: fluorination, Liquid/liquid extraction using Bi-Li, electrochemical
separation (need to separate first)

Corrosion Products: Removal method: liquid-liquid extraction, electrochemical
separation

O Oxygen and Moisture: Sparging, electrochemical separation

o O 00 pCcod O O
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Percent removal of actinides and
rare earths across extraction
cascade at 700 C. 0.001 mole
fraction of each impurity in the salt,
flow flux ratio of liquid metal to
molten is 3.
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» Method: Electrolysis in LIF-NaF-KF
* Working Electrode: W and Mo
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Oxrde Remova i ﬂA ,

Form non-soluble
compounds: UOF,,
LNOF, etc
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First cycle of CVs recorded from a Graphite WE (area: 0.7
cm?) in both FLiNaK and FLiNaK-Nal (1.5 wt%) melts at
600 °C under argon atmosphere. Scan rate: 200 mV/s. CE and
RE: Graphite and Pt
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As formation of the passivating
oxide layer becomes
thermodynamically unfavorable in
molten halide salts, corrosion
proceeds as active metal
dissolution, resulting in depletion
of less noble alloying element and
formation of void.
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Inconel 600 in molten fluorides, reproduced from ORNL-2349
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d Corrosion is an electrochemical process
Involving the anodic metal dissolution and
cathodic reduction of oxidants

M - M"™ + ne”
Ox + ne™ — Red

dTo make the reaction occur spontaneously
AG=-nF(E. —E;) <0

RT, @ o . RT
In 1"[n+<‘§LEC=EC+n In —2%

Where E, = E, +
nF¥ am ARred
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EI(:/[IH_/M (VS. Xz/X_) =
AG;(MX,)/nF
Fluorides and chlorides
of alkali and alkaline

earth are typically not
oxidizing

However, fuel
components (U), fission
products (Te), and
other impurities (TF,
H,O, Ni?*, etc.) are
effective oxidants

Nuclear Materials and Fuel
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Redox potential (V vs. CL/CT)
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« Charge transfer rate at metal surface

o (1 —a)nF anF
[ =1 {exp [ 77] — exp(——n)}

RT

 When mass-transfer of oxidants in the salt solution is
limited, oxidant reduction rate is expressed by

S
C a-nF
Ox ( C Uc)

ic = _iCO Texp RT
Cox
ankF
B toexp(— 7 1)
- iy anF

1- (O exp(— 7 1)

where i. = nFky(cSy — cdx); iDX = nFkpcdy

Nuclear Materials and Fuel [T VirginiaTech
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« Calculated polarization curves for alloy corrosion in molten fluoride
salts containing 0.01 mol% Cr(ll) and 0.001 mol% Fe(ll) and Ni(ll)
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Hastelloy N after 1-
year Cr depletion
in salt containing

0.13 mol% U
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O Oxidants and impurities in the melt
d Te-induced IGC
O Interaction with dissimilar materials
L Temperature gradient
 Radiation

O Alloying elements

Nuclear Materials and Fuel
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» Redox control principles
- Lower redox potential to make salt less oxidizing

« Faster reaction rate to consume oxidants

* Redox control methods
- Dissolved salt control (e.g., UF,/UF;)
- Major metal control (e.g., BeF,/Be)
- Gas phase control (e.g., HF/H,)

Nuclear Materials and Fuel 20 mV1rg1maTech
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MSRE experience indicated
negligible corrosion when
U(IV)/U(lIl) was controlled under
100.

Increase of U(IV)/U(Ill) ratio during
reaction with oxidants and fission
can be decreased by contacting
salt with reductive metals such as
Be and U.

For coolant salt, Eu(ll)/Eu(ll) are
promising redox buffer candidate
due to its appropriate formal
potential.

The monitoring of concentration
ratio/redox potential can be
performed by an electrochemical
sensor

Nuclear Materials and Fuel
Cycle center

31

Redox potential (V vs. I',/I')
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 Th-Based fuel cycle generally has higher proliferation
resistance

 New safeguards approaches are needed
 The salt chemistry is complex, but is controllable

 Many factors influence the material corrosion, by
controlling the redox potential, the corrosion can be

mitigated
Nuclear Materials and Fuel - [T VirginiaTech
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