Multidisciplinary Aspects of Developing Small Sensing Devices for Monitoring Chemicals and Biochemicals

Steve Semancik Biomolecular Measurement Division National Institute of Standards and Technology Gaithersburg, Maryland USA stephen.semancik@nist.gov

Plasmonic Gas & Solution Sensing

Electrochemical DNA-Based Monitoring

small device platforms, nanomaterials, temperature variation

National Institute of Standards and Technology (NIST)

Contributors to efforts at NIST:

Materials

Platforms

Kurt Benkstein Carlos Martinez* Josh Hertz*

John Suehle Mike Gaitan Richard Cavicchi

Gas Sensing

Doug Meier* Phil Rogers* Barani Raman Tekin Kunt Yangyang Zhao

Biosensing

Charles Choi* Herman Sintim Zuliang Shen Sarah Robinson

Acknowledgments: Technical Support - Mike Carrier, Chip Montgomery Funding - *NRC Postdoctoral Associateship Program

Growing Demand for Sensors: Examples

Motion iPhone and characterization Accelerometer Contextual tablet apps, Magnetometer awareness Personal health & Gyro wearables fitness **Ambient Light** Smart TV remote controller Proximity Gestures Pressure Sensor-aided navigation Touch 24 **Biometrics &** Haptics fingerprint O CPhone + wakeup/unlock Fingerprint Heart rate & blood 0 9 Health sugar monitors CO / pollutant Environmental detector UV & RGB Multi-media ideo/camera/audio Humidity **Touch detection** Fitbit Microphone Haptic feedback **Building floor** detection

- Electronics/interfacing/communication components are much more mature (low \$\$)
- <u>Physical sensing</u> is more prominent in commercial devices easier (fewer degrees of freedom)
- Need good sensor devices for <u>chemicals/biochemicals</u> reliable "chemical signals"

chemical/biochemical interactions produce a richness that is much more challenging (sensitivity, interferences)

Microdevice Sensing Technology

device-based electronic sensing can add convenience at low cost

Themes

• Functional microplatforms

- Integrated nanomaterials for transduction
- Signal processing of data streams
- Operational concepts and enabling technology

Bio-Inspiration for Chemical Detection

Insects

tracking low molecular conc's.of target molecules to locate food or a mate

reliable detection of drugs, explosives and disease [not overly convenient or network friendly]

evolutionary success (biological olfaction) challenges "electronic noses" (artificial olfaction)

"system" is sensitive and fast

Measurement Choices: Sensors vs Instruments

Instruments

larger, more expensive, "gold standard"

Direct measurement of chemical target

Mass spectrometry IR-vis-UV/fluorescence spectroscopy photo-electron spectroscopy

NMR spectroscopy

Sensors

smaller, cheaper, less precise, screening/networks

Indirect detection of chemical target

Electrochemical

Colorimetric/Opto-chemical

Bio-molecular (assays)

Solid State

< 1 cm, \$10s to \$100s

effects from interactions

lock and key

Multidisciplinary Research

Chemistry

- kinetics, thermodynamics
- surface reactions
- etching/micromachining reactions

Physics

- semiconductor/insulator properties
- electron transfer

Engineering

- design and fabrication of microdevices
- testing equipment

Materials Science

- thin films
- nanomaterials

Math

- data collection
- signal processing

Biology

- biomolecule binding
- medical screening

Outline

Chemiresistor Array

application-adaptable gas sensing

100 μm elements

Plasmonic Optical Sensor Platform

gas-phase and condensed-phase sensing

Microscale Electrochemical Device

biochemical characterization

DNA on 500 µm working electrode

Chemical Sensor Array Concepts: Adaptable Platform

Solid State Chemiresistor Devices

gas-induced changes in electrical conductance

- semiconducting oxides
- conducting polymers
- chemical and electronic modifiers
- nanotextured and nanostructured films

Materials

T₅

Substrate

Operating Temperature T_n(t)

T₆

T3

materials-dependent and temperature-dependent

- adsorption f₁(T)
- desorption f₂(T)
- coadsorbate reactions f₃(T)

T(t) programming controls these phenomena in time

approach produces <u>analytically rich datastreams</u> and allows a <u>tunable technology</u> for varied applications

Chemiresistive Sensing: Mechanistic Effects

- Oxygen vacancy defects set base conductance levels for oxide films
- Surface charge transfer to bonded adsorbates
- Adsorbates react to control adsorbed oxygen (air background)

T and microstructure are critical to transduction/performance (chemical and electronic interfacial properties)

sensitivity, selectivity, stability, speed

Approach: Trace Detection in Varied Backgrounds

tunable microsensor arrays

- MEMS platforms
- robust chemiresistive nanomaterials
- surface and sensor science
- advanced signal processing

independent chemiresistive **MEMS** microhotplate array elements

Temperature Programmed Sensing (TPS)

large T(t) databases from "virtual sensors"

target detection/recognition/monitoring

Microhotplate Platforms for Chemiresistive Sensing

Functionality

Features

- T measurement and control
- electrical characterization

- 20 °C to 500 °C; (~ 20 °C per mW)
- capable of heating rates of 10⁵ 10⁶ °C/s
- CMOS design rules

replication to 16-element array

multi-channel electronics used for operation & data collection

packaged device

MEMS Platform Fabrication

Processing Steps

- Design of multilevel mask set*
- Fab run at Si foundry
- Dicing of wafer and/or die
- Si etch "micromachining"
- Post-processing (e.g. contacts)
- Mounting/wirebonding
 - * CMOS design rules

15 mm x 15 mm die with multiple micohotplate-related designs

75 die on 6" wafer (~ 1500 array devices)

Top-Surface Si Micromachining

NIST

Film Deposition and Processing Methods

Local Heating

- Thermally-activated CVD
- Sol-gel, suspension drying
- Annealing
- Thermal lithography
- Thermally-assisted imprinting

Local Potential Control

• Addressable electrochemical or electrophoretic deposition

Masking

Micro-Dispensing (pipetting)

all processing done after etching and packaging (to avoid etchants and to use electrical contacts)

S. Semancik and R. E. Cavicchi, Accounts of Chemical Research 31, 279-287

Examples: Integrated Nanostructured Materials

WD7

High Area and Nanoparticle Materials

SnO₂ thin film

Sb:SnO₂ nanopaticle microshells

"Fast" Nanostructured Polymers

Nanowires, Nanorods and Nanotubes

ZnO rods

WO₃ wires

CNTs

SnO_x nanowires

Journal of Nanoparticle Research 8, 809-822

Temperature in Gas-Phase Chemical Sensing

 $\mathbf{S} = \mathbf{f} (\mathbf{T}, \boldsymbol{\Theta})$ $R_{ad} = \frac{d\Theta}{dt} = \frac{s_0}{N_{\text{max}}} \cdot f(\boldsymbol{\Theta}) \cdot \frac{P}{\sqrt{2\pi m k T}} \cdot e^{-\frac{E_{ad}}{kT}}$ $\mathbf{R}_{\text{des}} = \begin{bmatrix} -\frac{d\Theta}{dt} = v_x \cdot \boldsymbol{\Theta}^x \cdot N_{\text{max}}^{x-1} \cdot e^{-\frac{E_{des}}{kT}} \end{bmatrix}$ Kaus Christmann

Sticking coefficient, adsorption and desorption rates - enable interesting operating modes when platforms have *time constants in ms range*

(Chemiresistive Sensing)

Higher Dimensionality: Temperature Programmed Sensing

Single Microdevice Sensing

With fast temperature modulation, what discrimination can be accomplished?

TPS-based operation of a single sensor (SnO₂ film + ~20A annealed Pd)

Challenge – discriminating 2 similar chemicals

alcohol vapors in air

How should the temperature of the microsensor be varied to best discriminate between the two alcohols?

Let the sensor LEARN the answer

Learning about the Sensor's Response vs T

using semi-random response information to aid discrimination

Measured response (for ethanol)

Temperature can be flexibly programmed to vary between ~ 20 °C and 450 °C

Random jumps were found to be too erratic but 10 points along randomly generated T slopes worked well, with T reset period ~ 300 ms

T. A. Kunt, T. J. McAvoy, R. E. Cavicchi and S. Semancik, Optimization of temperature programmed sensing for gas identification using micro-hotplate sensors, (Sensors and Actuators B 53, 24-43)

Predicted Response/Measured Response Comparisons

T. A. Kunt, T. J. McAvoy, R. E. Cavicchi and S. Semancik, Optimization of temperature programmed sensing for gas identification using micro-hotplate sensors, (Sensors and Actuators B 53, 24-43)

(Minimum discrimination time for these alcohols: ~ 2.2 sec)

[with rich data and PCA/LDA can do mixtures]

parametric pulsed-ramp programs employed for elements with 3 types of sensing films

locate <u>high-value portions of</u> <u>TPS datasets</u> via linear discriminant analysis (LDA) cluster separability and biplots

Systematic Data Acquisition

for development of application-optimized T programs

Signal Processing Methods (AI/ML)

methodology for extracting best analytical information

Recognition Classifiers

Dimensionality Reduction and Data Preprocessing

Principal component analysis (PCA) Linear discriminant analysis (LDA) Baseline correction

New Techniques for Improving Robustness

Bio-inspired signal processing – Hierarchical Recognition Method Event Detection

Pruned Optimization Programs/Resulting Performance

22-second programs covering2 bases and a variety of pulsedexcursions

Taking things a bit further -

toward a hierarchical/bioinspired method for dealing with different types of chemicals

16 materials (2 copies of 8 films) temperature ramped from 50 to 500 ° C (in 1 ° C increments) 16 materials x 450 temperatures = 7200 psuedo-sensors

> For detecting compounds trained on, and "classifying" the class of unknowns

Recognize Trained Analytes/Classify Unknowns

Optimized Analytical Answers from Rich Database

-0.25

Analytical Chemistry 80, 8364-8371

New Signal Processing Approaches - Hierarchy

- good recognition of specific compounds
- chemical classification of (untrained) unknowns

method automatically avoids data regions where significant drift occurs

Adaptability and Tunability with Common MEMS Platform

nanomaterials with varied compositions and morphologies

testing facilities

TICs phosphonates volatile organics breath biomarkers

Some Chemicals and Interferences Tested with NIST Conductometric Microsensor Technology

Volatile Organic Compounds		Chemical Warfare Simulants & Agents		
Acetone	C ₃ H ₆ O	Vap.Press@25°C(torr)		
Benzene	C ₆ H ₆	CEES	C₄H ₉ CIS	3.4
Carbon Monoxide	CO	DFP	$C_6H_{14}FO_3P$	0.579
Carbon Tetrachloride CCl₄		DMMP	$C_3H_9O_3P$	1.2
Chloroheptane	C ₇ H ₁₅ Cl	GA	$C_5 H_{11} N_2 O_2 P$	0.07
Dichloromethane	CH ₂ Cl ₂	GB	C₄H ₁₀ FO₂P	2.9
Ethanol	CH ₃ CH ₂ OH	HD	C ₄ H ₈ Cl ₂ S	0.11
Hydrogen	H_2			
Methanol	ĊH₃OH	Toxic Industrial Chemicals		
Naphthalene	$C_{10}H_8$	Acrylonitrile	C ₃ H ₃ N	107.8
Trichloroethylene	CHCICCI ₂	Ammonia	NH ₃	>760
-	-	Arsine	AsH ₃	>760
and others		Formaldehyde	CH₂Õ	>760
		Hydrogen Cyanide	HCN	≈760
		Methyl Isocyanate		348
		Parathion	C ₁₀ H ₁₄ NO₅PS	7.4
		and others		

Detection at ppm concentrations has been demonstrated for ALL analytes; ppb (and high ppt) sensitivity has been demonstrated for some compounds.

Preliminary Efforts: Medical Breath Analysis

acetone (diabetes) in synthetic breath

IEEE Sensors Journal 10, 137-144

SnO₂ film + Sb:SnO₂ microshell film in TPS mode

multielement TPS with training and testing for 0,1, 2 or 3 target analytes (*biomarkers for diabetes, renal issues*) in synthetic breath

[3 materials, 18 ramp T, 2 base T]

Rogers, Benkstein, Semancik, Analytical Chem. 84, 9774

(machine learning)

Other Enabling Technical Features

- Efficient Materials Studies/Optimization combi-array processing/performance evaluations
- Integration of Support Functions CMOS-based on chip electronics; coupled microfluidics
- Reliability/Longevity

improved materials & contacts, "delayed activation" replacement within deployed devices

Monolithic Devices & Electronics

Array-Based Materials Studies

No deposition (T too low)

Precursor: Ti(NO₃)₄ at 35 $^{\circ C}$ Pressure: 0.5 Torr Flow: 0.9 sccm Argon 300 s deposition time

"Delayed Activation"

2ล

 $2\mathbf{b}$

Π

Microanalytical Systems

Outline

Chemiresistor Array

application-adaptable gas sensing

100 μm elements

gas-phase and condensed-phase sensing

Microscale Electrochemical Device

biochemical characterization

DNA on 500 µm working electrode

380 nm features

Nanoengineered Materials for Photonic Sensing

Sensing Signals

Surface-Enhanced Raman Scattering (SERS) Localized Surface Plasmon Resonance (LSPR) – capture affinity

NIST

Nanodome Array Fabrication

Nanoreplica Molding Process

array on flexible polyethylene terephthalate substrate (PET)

- Room temperature
- Low-force molding
- Plastic substrate
- Low-cost/disposable
- Large-area fabrication
- Uniform, reproducible structure
- Simple to control gap dimension

Fabrication at NIST NanoFab

Localized Surface Plasmon Resonance (LSPR)

Plasmonic "Nanodome" Array

Modes

Grating Diffraction (G)

Multipole (M)

Dipole (D)

Finite Difference Time Domain (FDTD) modeling of photonic modes (spatial/size effects)

Choi and Semancik, Optics Express, 21, 28304

Label-Free Capture Affinity Biosensor

<u>Plasmonic Nanodome</u> <u>Array</u>

Biomolecular attachment
 to sensor surface

induces shift in resonance of localized modes

Surface Sensitivity

stacking alternate-charge 5 nm layers to explore surface range and compare to theory 8

Charged polyelectrolyte layers

Nanodome Sensor

PEI: poly(ethylenimine) PSS: poly(sodium 4styrenesulfonate) PAH: poly(allylamine hydrochloride) Finite Difference Time Domain modeling of photonic modes

Choi and Semancik, Nanoscale 5, 8138–8145

Protein – Protein Binding Assay

Protein A (0.5 mg/mL) adsorbed on nanodome array and exposed to IgG

Resonance Mode	Κ _D (μΜ)	Detection Limit (nM)
Dipole	0.693	0.131
Multipole	0.672	0.767
Grating Diffraction	0.690	1.69

K_D ~ 0.53 μM measured previously Lu et al. Appl. Phys. Lett. 93, 11113

Recent Plasmonics Studies: Gas Sensing with Holes and a Camera

NIST

(with George Washington Univ.)

Outline

Chemiresistor Array

application-adaptable gas sensing

100 μm elements

Plasmonic Optical Sensor Platform

gas-phase and condensed-phase sensing

380 nm features

Microscale Electrochemical Device

biochemical characterization

DNA on 500 µm working electrode

Electrochemical Biosensing

- Surface Immobilized biomolecules
- Microheater-Based T Control, but ~ 20 °C 80 °C (not 20 °C 480 °C)
- T_m Measurements as a Property Indicator (biomolecule stability or binding-based change in stability)

Drug discovery & quality control

Medical diagnostics

G-Quadruplex DNA

Electrochemical Sensing with Temperature Control

moving toward <u>smaller-volume</u>, <u>electronic</u> devices

Examples of prior electrochemical device research involving temperature:

T-dependent hot wire electrochemistry

Flechsig, Peter, Hartwich, Wang, Grundler, Langmuir 21, 7848-7853

Peltier heater-based electrochemical measurements

Yang, Hsieh, Patterson, Ferguson, Eisenstein, Plaxco, Soh Angew. Chem. Int. Ed. 53, 3163-3167

Present work:

- Wafer-based planar microscale fabrication
- Small-footprint elements small volume sample analyses
- Integrated, localized heater (dedicated to each element)
- Potentially faster T sweeps and T programming
- Compatible with electronic microarray development

10 µL (moving toward 100nL)

Miniature Temperature-Controlled Electrochemical Device

Wafer-Based Planar Fabrication 3-electrode platform with microheater

NIST NanoFab

Sputter Cluster Deposition Tool (Ion Milling Tool – not shown)

Feasibility for 2 Potential Application Areas

perform studies on hybridization and ligand binding interactions using microscale platforms and thiol-tethered & electroactively tagged biomolecular probes

- Disease screening single nucleotide polymorphism (SNP) detection
- Drug discovery detection of property changes associated with binding events for (small molecule) drugs

Monitor:

- binding-based
 electron transfer
 (hybridization)
- conformational/distancebased electron transfer
- thermally-induced dehybridization

Duplex Melting Curve Analysis

Reproducibility of Duplex Electrochemical Melting

• $T_m(day1) = 27.6 \text{ °C}, T_m(day2) = 27.1 \text{ °C} \text{ and } T_m(day3) = 28.0 \text{ °C}$

• $T_m(average) = 27.6 \pm 0.4 \, {}^{\circ}C$

Z. Shen, H. O Sintim and S. Semancik, Analytica Chimica Acta 853, 265-270

T_m Detection of Single Nucleotide Polymorphism (SNP)

 SNP detection can be useful for predicting susceptibility to disease and drug metabolism

- Traditionally SNP detection employs optical melt-curve analysis
- Electrochemical measurements offer an electronic alternative

explore dehybridization with increased temperature for varied cases

Single Nucleotide Polymorphism (SNP) Detection

Probe A (full match): 5'-SH-C6H12-TTT ACC TTT ATT -3' Probe A1 (1 mismatch): 5'-SH-C6H12-TTT AC<u>G</u> TTT ATT -3' Probe A2 (2 mismatch): 5'-SH-C6H12-TTT A<u>GG</u> TTT ATT -3' Probe B: 3'-MB-AAA TGG AAA TAA CC-5'

• $T_m(FM) = 27.6 \text{ °C}, T_m(1MM) = 22.5 \text{ °C} \text{ and } T_m(2MM) = 20.3 \text{ °C}$

Z. Shen, H. O Sintim and S. Semancik, Analytica Chimica Acta 853, 265-270

Screening for Drug Stabilization Effects

- Stability changes to detect small molecule drug binding
- Binding increases duplex DNA stability (higher T_m)

Diminazene aceturate (DMZ, Berenil)

Proflavine

(with U MD and Purdue)

Ligand Stabilization of Duplex DNA

Melting profiles in 10 μL of 2 $\mu mol/L$ cDNA and 13 $\mu mol/L$ ligand in 10 mmol/L PBS with 100 mmol/L NaCl pH 7.4.

(standard deviations given for three replicates)

Robinson, S. M.; Shen, Z.; Askim, J. R.; Montgomery, C. B.; Sintim, H. O.; Semancik, S. Biosensors 9, 54-67.

Conclusions

developing measurement concepts for microscale devices that report on chemistry/biochemistry

Multidisciplinary research

- Platform design and fabrication
- Nanomaterials
- Surface/interfacial phenomena
- Varied application areas

