Symmetries, Clusters, and Synchronization Patterns in Complex Networks Thomas E. Murphy

Dept. of Electrical & Computer Engineering (ECE) Institute for Research in Electronics & Applied Physics (IREAP) University of Maryland

> Mid-Atlantic Senior Physicists Group Seminar April 17, 2015

• Office of Naval Research:

Contributors and Co-Authors

- Lou Pecora (Naval Research Laboratory)
- Prof. Francesco Sorrentino (UNM)
- Prof. Rajarshi Roy (UMD)
- Aaron Hagerstrom (Graduate Research Assistant, Physics)

Outline

- Synchronization of Dynamical Systems
- Describing Networks
 - Master Stability Function
- Spatio-Temporal Optical Network
- Symmetries and Clusters
- Isolated Desynchronization

Synchronization in Nature

S. H. Strogatz et al. Nature 438, 43 (2005).

Synchronization in Engineered Systems

http://en.wikipedia.org/wiki/Synchroscope

Chaotic Systems Sensitivity to Initial Conditions

 $x_1(0) = 1.0$

 $y_1(0) = 1.0$

 $z_1(0) = 1.0$

 $x_1(0) = 1.001$

 $y_1(0) = 1.0$

 $z_1(0) = 1.0$

$$\frac{dx_{1}}{dt} = \sigma(y_{1} - x_{1}) \qquad \sigma = 10, \ \rho = 28, \ \beta = 8/3.$$

$$\frac{dy_{1}}{dt} = x_{1}(\rho - z_{1}) - y_{1}$$

$$\frac{dz_{1}}{dt} = x_{1}y_{1} - \beta z_{1}$$

$$\frac{20}{10} \int_{-10}^{0} \int_{-20}^{0} \int_{0}^{0} \int_{10}^{0} \int_{1$$

Synchronization of Chaos

$$\frac{dx_2}{dt} = \sigma(y_2 - x_2) + 1.5(x_1 - x_2)$$

$$\frac{dy_2}{dt} = x_2(\rho - z_2) - y_2$$

$$\frac{dz_2}{dt} = x_2y_2 - \beta z_2$$

$$x_1(0) = 1.0$$

$$y_1(0) = 1.0$$

$$y_2(0) = 1.0$$

$$z_2(0) = 5.0$$

$$x_2(0) = 5.0$$

ARYLAN

100

Outline

- Synchronization and Chaos
- Describing Networks
 - Master Stability Function
- Spatio-Temporal Optical Network
- Symmetries and Clusters
- Isolated Desynchronization

Representing Networks and Graphs

- C_{ij} = 1, if node i and j are connected
- Assume all connections are identical, bidirectional
- Generalizations:
 - Weighted connections
 - Directional links $(C_{ij} \neq C_{ji})$ 10

Coupled Dynamical Systems

Continuous-time:

$$\frac{d}{dt}x_i(t) = F(x_i(t)) + \sum_{j=1}^N C_{ij}H(x_j(t))$$

Discrete-time: $x_i[n+1] = F(x_i[n]) + \sum_{j=1}^N C_{ij}H(x_j[n])$

Q1: <u>*Can*</u> these equations synchronize?

(Do they <u>admit</u> a synchronous solution $x_1 = x_2 = ... x_N$?)

Q2: <u>Do</u> these equations synchronize?

(... and is the synchronous solution stable?)

Synchronization of Coupled Systems

Master Stability Function Is the Synchronous Solution Stable

VOLUME 80, NUMBER 10

PHYSICAL REVIEW LETTERS

9 MARCH 1998

Master Stability Functions for Synchronized Coupled Systems

Louis M. Pecora and Thomas L. Carroll

Code 6343, Naval Research Laboratory, Washington, D.C. 20375 (Received 7 July 1997)

We show that many coupled oscillator array configurations considered in the literature can be put into a simple form so that determining the stability of the synchronous state can be done by a master stability function, which can be tailored to one's choice of stability requirement. This solves, once and for all, the problem of synchronous stability for any linear coupling of that oscillator.

- Eigenvalues of C: $\{0, \lambda_1, \lambda_2, \lambda_3, \ldots\}$
- Stability condition: $M(\lambda_i) < 0$, for all i

Master Stability Function

Μ(λ)

Outline

- Synchronization and Chaos
- Describing Networks
 - Master Stability Function
- Spatio-Temporal Optical Network
- Symmetries and Clusters
- Isolated Desynchronization

Electrooptic Feedback Loop

Map equation:

$$x[n+1] = a\sin^2(x) + \delta$$

Spatio-Temporal Optical Network Video Feedback Network

spatial modulator

Spatial Light Phase Modulator

• Same technology used in LCD displays

Coupled Dynamical Systems

- C_{ij} programmed through feedback (or by Fourier optics)
- SLM pixels are imaged onto camera pixels
- Almost arbitrary networks can be formed

Example: 11 node network (6 links removed)

Network connections indicated by lines Square patches of pixels for each node

Q: Can we predict and explain this cluster synchronization?

Outline

- Synchronization and Chaos
- Describing Networks
 - Master Stability Function
- Spatio-Temporal Optical Network
- Symmetries and Clusters
- Isolated Desynchronization

Identifying Clusters and Symmetries

Symmetries and Dynamics

- Each symmetry can be described by a Ndimensional permutation matrix R_g
- The permutation matrix commutes with C:
 R_gC = CR_g
- The equations of motion are invariant under symmetry operation
- Orbits = subsets of nodes that permute among themselves under symmetry group (clusters!)

Symmetries (Example)

 Symmetries and clusters are hard to identify in all but the simplest networks!

Hidden Symmetries

8640 symmetries

G.gens() = [(7,10), (6,7), (5,6), (4,8), (2,4)(8,9), (1,5), (1,11)]

0 symmetries

(Free) Tools for Computing Symmetries

- GAP = Groups, Algorithms, Programming (software for computational discrete algebra) <u>http://www.gap-system.org/</u>
- Sage = Unified interface to 100's of open-source mathematical software packages, including GAP http://www.sagemath.org/
- Python = Open-source, multi-platform programming language http://www.python.org/

Example Output (GAP/Sage)

```
G.order(), G.gens()= 8640 [(9,10), (7,8), (6,9), (4,6), (3,7), (2,4), (2,11), (1,5)]
node sync vectors:
  Node 2
orb= [1, 5]
nodeSyncvec [0, 1, 0, 0, 0, 1, 0, 0, 0, 0]
cycleSyncvec [1, 0, 0, 0, 1, 0, 0, 0, 0, 0]
  Node 1
orb= [2, 4, 11, 6, 9, 10]
nodeSyncvec [1, 0, 1, 0, 1, 0, 1, 0, 1, 1]
cycleSyncvec [0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1]
  Node 4
orb= [3, 7, 8]
nodeSyncvec [0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0]
cycleSyncvec [0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0]
```


Stability of Synchronization linearizing about cluster states

- C = coupling matrix in "node" coordinate system
- T = unitary transformation matrix to convert to IRR coordinate system
- B = TCT⁻¹ = block-diagononalized form

Transformed Coordinate System for perturbations away from synchrony

- T is not an eigendecomposition or permutation matrix
- T is found using irreducible representations (IRR) of symmetry group (computed from GAP)

Example: Diagonalization

tal telefoliat compiling melet in	Variationa	l coupling	matrix	TCT^{-1}
-----------------------------------	------------	------------	--------	------------

-6.00 -3.46 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0
-3.46 -5.00 -4.24	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0
0.0 -4.24 -6.00	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0
0.0 0.0 0.0	-8.00 0.0	0.0 0.0	0.0 0.0	0.0 0.0
0.0 0.0 0.0	0.0 -6.00	0.0 0.0	0.0 0.0	0.0 0.0
0.0 0.0 0.0	0.0 0.0	-6.00 0.0	0.0 0.0	0.0 0.0
0.0 0.0 0.0	0.0 0.0	0.0 -11.00	0.0 0	.0 0.0 0.0
0.0 0.0 0.0	0.0 0.0	0.0 0.0	-11.00 0	0.0 0.0 0.0
0.0 0.0 0.0	0.0 0.0	0.0 0.0	0.0 -11.0	0.0 0.0 0.0
0.0 0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	-11.00 0.0
0.0 0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 -11.00

Synchronization Manifold

Outline

- Synchronization and Chaos
- Describing Networks
 - Master Stability Function
- Spatio-Temporal Optical Network
- Symmetries and Clusters
- Isolated Desynchronization

Cluster Synchronization in Experiment

- 11 nodes
- 49 links
- 32 symmetries
- 5 clusters:
 - Blue (2)
 - Red (2)
 - Green (2)
 - Magenta (4)
 - White (1)

Isolated Desynchronization

• Pay attention to the magenta cluster:

 $a = 1.4\pi$

Synchronization Error

Intertwined Clusters

- Red and blue clusters are inter-dependent
- (sub-group decomposition)

Transverse Lyapunov Exponent (linearizing about cluster synchrony)

Symmetries and Clusters in Random Networks

- N= 25 nodes (oscillators)
- 10,000 realizations of each type
- Calculate # of symmetries, clusters

Random

 $n_{\text{delete}} = 20$

Scale-free Tree

Scale-free γ

A.-L. Barabasi and R. Albert, "Emergence of scaling in random networks," *Science* **286**, 509-5<u>12</u> (1999). K-I Goh, B Kahng, and D Kim, "Universal behavior of load distribution in scale-free networks," *Phys. Rev. Lett.* **87**, 278701 (2001)

Symmetry Statistics

Symmetries, clusters and subgroup decompositions seem to be universal across many network models

Power Network of Nepal

Mesa Del Sol Electrical Network

- 4096 symmetries
 - 132 Nodes
 - 20 clusters
 - 90 trivial clusters
- 10 subgroups

Symmetries & Clusters in Larger Networks

MacArthur et al., "On automorphism groups of networks," Discrete Appl. Math. 156, 3525 (2008).

	Number of Nodes	Number Edges	of Number of Symmetries
Network	$N_{\mathscr{G}}$	$M_{\mathscr{G}}$	ag
Human B Cell Genetic Interactions	5,930	64, 645	5.9374×10^{13}
C. elegans Genetic Interactions 26	2,060	18,000	$6.9985 imes 10^{161}$
BioGRID datasets 23:			
Human	7,013	20,587	1.2607×10^{485}
S. cerevisiae	5,295	50,723	6.8622×10^{64}
Drosophila	7,371	25,043	$3.0687 imes 10^{493}$
Mus musculus	209	393	5.3481×10^{125}
Internet (Autonomous Systems Level)	2 22, 332	45,392	$1.2822 \times 10^{11,298}$
US Power Grid 25	4,941	6,594	$5.1851 imes 10^{152}$

> 88% of nodes are in clusters in all above networks

- Synchronization is a widespread in both natural and engineered systems
- Many systems exhibit patterns or clusters of synchrony
- Synchronization patterns are intimately connected to the hidden symmetries of the network

For more information:

 L. M. Pecora, F. Sorrentino, A. M. Hagerstrom, TEM, and R. Roy "Cluster synchronization and isolated desynchronization in complex networks with symmetries"

Nature Communications **5**, 4079 (2014)

- B. Ravoori, A. B. Cohen, J. Sun, A. E. Motter, TEM, and R. Roy, "Robustness of Optimal Synchronization in Real Networks" *Physical Review Letters* 107, 034102 (2011)
- A. B. Cohen, B. Ravoori, F. Sorrentino, TEM, E. Ott and R. Roy, "Dynamic synchronization of a time-evolving optical network of chaotic oscillators" *Chaos* 20, 043142 (2010)
- TEM, A. B. Cohen, B. Ravoori, K. R. B. Schmitt, A. V. Setty, F. Sorrentino, C. R. S. Williams, E. Ott and R. Roy,
 "Chaotic Dynamics and Synchronization of Delayed-Feedback Nonlinear Oscillators" *Philosophical Transactions of the Royal Society A* 368, 343-366 (2010)
- B. Ravoori, A. B. Cohen, A. V. Setty, F. Sorrentino, TEM, E. Ott and R. Roy, "Adaptive synchronization of coupled chaotic oscillators" *Physical Review E* 80, 056205 (2009)

