QC Programming

 and all that

Rudolph A. Krutar, PhD

$$
2014 \text { Dec } 17
$$

Structure of Speech

- Opening
- Quantum Computing
- QC Programming
- And All That
- Conclusion

Opening

- Young's Two-Slit Experiment
- Exponential potential
- Various Limitations
- You need not be a physicist!
- No new computable functions.

Young's Two-Slit Experiment

- Plane wave
- Two slits
- Screen
- Film
- Single photon
- Block a slit, ..

Exponential Potential

- Two places/actions at once
- What's a qubit? - BC's Noah
- 2^{n} simultaneous operations
- A 20-qubit screen image
- A tornado in 60 qubits
- The Universe in 700 Qubits

Quantum-Compressed Images

- N qubits store 2^{N} superposed states, therefore
- Store $2^{A} \times 2^{B} B \& W$ image in $A+B$ qubits.
- Store $2^{A} \times 2^{B}$ gray image in $A+B$ qubits.
- Can these images be manipulated?
- Retrieve image from many NMR replicas.
- How long does it take, say by raster scan?
- Demonstrate 4×4 images in $2+2$ qubits.
- In general, map onto N qubits:
- a 2^{N}-bit string,

- or a 2^{N}-scalar sequence,
- or a sequence of $2^{\mathrm{N}-2 \mathrm{~K}}$ quantum states of K qubits?

Various Limitations

- Moore's Law
- Technological phase lock
- Unitary operations
- Beware the Turing Tar Pit!
- "I'm not smart enough to ...
- Limits on alternate realities?

Moore's Law

Not a physicist?

- Qubits are fungible!

- Any implementation will do
- Qubit physics is hard
- Metaphysics helps
- Qubit math is easy

Perlis's Turing Tarpit

Quantum Computing

- Quantum mechanics is weird?
- QC makes some problems tractable.
- Particles do not get entangled!
- Their quantum states do.

Quantum

mechanics is

weird?

A single particle can:

- follow many paths at a time
- spin in many directions at once
- entangle its state with another

QC Programming

- Why is it hard?
- Unscalable Bloch Sphere
- Relax the tensor product.
- Time goes down the page.
- Similarities to Prolog
- QC Applications

Bloch Sphere

- Longitude => phase
- Latitude => probability
- Bearing => missing phase

Unscalable Bloch Sphere

- Meant to suggest quantum state
- Exposes my coin trick
- Does not scale,
- Even to two qubits
- Useless for QC insight

Bullseye Icon

- Single Qubit Bullseye
- Basic Qubit Ops
- Quaternions \rightarrow Pauli Matrices
- Polar Quaternion Product
- Quaternion Rotations
- Hadamard Transform

Single Qubit Bullseye

- Complex plane
- Qstate by arrow
- Unknown phase Q
- Axes unknowable
- Outer ring implicit
- Random tosses

Basic Qubit Ops

- Basic ops
- X reverses arrow
- Y rotates b,a $\pm 90^{\circ}$
- Z negates a

Pilot Terms

- $\mathrm{R}_{\mathrm{Z}}(\mathrm{t})=$ pitch
- $R_{x}(t)=$ roll
- $\mathrm{R}_{\mathrm{Y}}(\mathrm{t})=$ yaw

II: Quaternions \rightarrow Pauli Matrices

$\mathrm{Z}=$

1	0
0	-1

$\pi 1=\mathrm{I}=$

1	0
0	1

$$
\mathbb{I} \boldsymbol{i}=-\mathrm{Xi}=
$$

$\mathscr{T} \boldsymbol{j}=-\mathrm{Yi}=$
I/k $=-\mathrm{Zi}=$

0	-1
1	0

-i	0
0	i

Polar Quaternion Product

- Given $\mathbf{u}^{2}=\mathbf{v}^{2}=(\mathbf{u v})^{2}=-1$
- $e^{(c+d) u / 2}\left(R^{b u}+S e^{a u} v\right) e^{(c-}$ d) $\mathbf{u} / 2$

$$
=\operatorname{Re} e^{(b+c) u}+S e^{(a+d) u} \mathbf{y}
$$

- which rotates two planes independently.

Quaternion Rotations

Hadamard Transform

- Changes probabilities
- Sum and difference
- Implicit frame

Qubit Registers

- Unit Octonion
- Coupling Two Qubits
- Three Entangled Qubits
- Relax Tensor Product

Unit Octonion

Coupling Two Qubits

Relax tensor product

- Used to concatenate two qubit registers
- Assumes sequences of qubits My 1976 CS was titled "Flexors" for mechanisms to
- Qubit 2 should be separable
- Qreg = names of qubits extend or flex a programming system.
- observables: Obs=Qreg \rightarrow Bit
- quantum states: Obs \rightarrow Amp
- Catenation: $\quad q^{A^{+} B}=\left(q^{A}\right)\left(q^{*}\right)$

QC Applications

- Factoring large numbers
- Quantum crytography
- Modelling weather
- Simulating quantum mechanics

QC Programming Languages

- QCL
- Q Lambda Calculus
- Quipper - extensive libraries
- QML - a functional QC language
- Google's QC Playground
- QLP — my Q Logic Programming

And All That

- QKD Kolors
- Music of the Orbs
- Kwarks = Quarks ${ }^{U}$ Leptons
- Mesons
- Baryons
- Nuclei

Rebuilding the Universe

 from the quarks up by
R. Krutar

Do you wonder if the Universe is really like they say it is? How can it be? Why halves and thirds? Where is all the antimatter? What are free quarks? What are light and gravity? Why is dark matter dark? How do neutrinos and top quarks decay? What insidious unwarranted assumption is rampant throughout $S \& T$? How can the expansion of the Universe accelerate?

QKD Kolors

- One More QCD Color
- Sixteen QKD kolors
- QKD Kolor Numbers
- Boson Photon
- Particle Families

One More QCD Color

Sixteen QKD Gluon Kolors

Only gluons have pure kolors:

- Three lgt gluons/kolors gi,gj,gk
- One white gluon/kolor gl

```
gl
gj goi gk
gok gi goj
    go
```

- Four drk gluons/kolors go,goi,goj,gok
- Eight anti- gluons/kolors from -gl
- One at each corner of a kube

QKD Kolor Numbers

- Number kolors as shown:
- Multiply mod 120 to add
- Anti-kolors from -gl=49

- Mod 5=-1 for antimatter
-gl,...
- $\operatorname{Mod} 4=-1$ for greens
- Mod $3=-1$ for blues
- Mod 24 < 0 for drk kolors
gj,gi,goj,goi, -...
gk,gi,gok,goi,
go,gok,goj,goi, -...

Boson Photon

- Photon is gl ~ -gl
- Separated by wavelength

Legend: + for + - for 0 $=$ for -

Particle Families

- Sixteen gluons
- Three Igt families

Family Album

- Three drk families
- =============
- Seven families
- 7*16=112 particles

Music of the Orbs

Krutarnion = eight integers on a cube

- orb = sum of their squares
- orb=0: totally balanced
- orb=1: sixteen unicorn partons
- orb=2: 112 kwarks
- orb=8: unit octonions with 240 integers

Ancient Free \& Accepted Mesons

- Leptons are free kwarks
- Quarks are accepted kwarks

- A (free) meson is (up -dn) of same kolor
- An accepted meson (up +dn) not same
- A photon interchanges up and dn

Baryon Superposition

- An accepted meson and
- a quark of the missing kolor
- form a baryon (proton or neutron)
- Which quark is which?
- The baryon spins in ambiguity
- through superposition of states
- without its parts moving!

Nuclear Reactions

- All Igt reactions seem to be photonic,
- Neutrino oscillation for n to n '

$$
\begin{aligned}
& \mathrm{n}+\mathrm{x}=\mathrm{n} \text { ' for some } \mathrm{x}, \\
& \mathrm{x}=\mathrm{n} \text { ' }-\mathrm{n} \text { obviously },
\end{aligned}
$$

- which is dn and drk.

Conclusion

- QC is fascinating \& promising
- You need not be a physicist
- Bottom-up Physics approach is slow
- It needs more minds
- Especially CS approaches
- How would you exploit it?

