

Steel Chemistry

Element	1991 (CANMET)	1996 (UMO)	1996 (Beth. St.)	AISI 1018 (ASM)
Carbon	0.20%	0.21%	0.21%	$0.18-0.23 \%$
Sulfur	0.065%	0.069%	0.061%	0.05% max
Manganese	0.52%	0.47%	-	$0.60-1.0 \%$
Phosphorus	0.01%	0.045%	-	$0.04 \% \mathrm{max}$
Nitrogen	0.004%	0.0035%	-	0.0025%
Oxygen	-	0.013%	-	-

Mechanical Properties

Plate recovered in:
Yield Stress
UTS
Percent Elongation
(Design Spec: 10-15 tons/sq. inch yield, 30\% elongation)

Microstructure of Hull Steel

Birkle, Wei and Pellissier, Trans. ASM 55 (1962) p. 981.

Test temperature

However,

- the impact with the iceberg was not felt by most passengers
- the lateral motion of the ship was negligible

The impact energy (and strain rate) is a very sensitive function of the impact angle.

Is Charpy appropriate?

What loading rate corresponds to the iceberg collision?

FRA says Charpy is good for railroad car collisions in a switching yard (15-20 mph).

Slow Three-Point-Bending Results (ASTM E-399-81)
 (Orientation = T-L)

Sample Number $T\left({ }^{\circ} \mathrm{C}\right)$ Toughness (MPa $-\mathrm{m}^{1 / 2}$)

B1	0	55
B2	0	58
B3	0	49

B5 25 64
B6 2571

Bottom Line

- Steel was state-of-the-art for 1911.
- Appreciable low temperature toughness.
- "Brittle Steel Theory" is wrong.

\section*{Rivets
 \section*{\section*{\section*{-}}

=

}} \square

-
-

-
II
(1)
$=$

\qquad
-
$\sqrt{2}$
\square
$=$
E
In

©
-
\square
$+\quad-2$
\square
-
\square
(
,
=

(
,
\square
-
-
\square
\square
r_{1}

Riveting

- 3,000,000 wrought iron and steel rivets
- Hand and hydraulically driven
- Total weight $=1,550$ tons

VTM-27-B Humberait

Was there a problem with the riveting?

- Historical evidence from Olympic
- Eyewitness testimony
- Sonar evidence
- Metallurgical forensic evidence

Sonar Imaging of Wreck

(from IIlustrated Times of London, April 16, 1912)

New images of parted seams in damage area

(courtesy Discovery Communications)

- Located by counting plates
- Right where Fireman Barrett said it was

-

II
=
 \section*{\section*{Rivet Metallurgy
 \section*{\section*{Rivet Metallurgy
}}
}} $=$
R

)
4
,
$=$
I
$=$

$+$
$\sqrt{8}$

∇
,
\square
$>$

-
5
.

$($
,
\rightarrow

- \qquad
\qquad
\qquad
\qquad
C
-

\square

\square -

 $=$

-

Wrought Iron Rivets

- Commercially pure iron with $1-4 \%$ incorporated slag
- Puddled, extruded into a bar, and formed into rivets

Mechanical Properties (avg.)

Orient.	YS	UTS	$\%$
Long.	27 ksi	48 ksi	14
Trans.	18	20	2

(Source: Making, Shaping and Treating of Steel, USS, 1957)

How can a rivet fail?

- Mid-shaft failure

-Head "pops" off
- Cupping

