

Steel Chemistry

Element	1991	1996	1996	AISI 1018
	(CANMET)	(UMo)	(Beth. St.)	(ASM)
Carbon	0.20%	0.21%	0.21%	0.18-0.23%
Sulfur	0.065%	0.069%	0.061%	0.05% max
Manganese	0.52%	0.47%	-	0.60-1.0%
Phosphorus	0.01%	0.045%	-	0.04% max
Nitrogen	0.004%	0.0035%		0.0025%
Oxygen	-	0.013%	-	-

Mechanical Properties

 Plate recovered in:
 1996
 1991

 Yield Stress
 38 ksi (262 MPa)
 41 ksi (280 MPa)

 UTS
 62.5 ksi (430 Mpa)
 62.6 ksi (432 MPa)

Percent Elongation 29 31

(Design Spec: 10-15 tons/sq. inch yield, 30% elongation)

Microstructure of Hull Steel

Birkle, Wei and Pellissier, Trans. ASM 55 (1962) p. 981.

Test temperature --->

However,

- the impact with the iceberg was not felt by most passengers
- the lateral motion of the ship was negligible

The impact energy (and strain rate) is a very sensitive function of the impact angle.

Is Charpy appropriate?

What loading rate corresponds to the iceberg collision?

FRA says Charpy is good for railroad car collisions in a switching yard (15-20 mph).

Slow Three-Point-Bending Results (ASTM E-399-81) (Orientation = T-L)

Sample Number	T (°C)	Toughness (MPa - m)
B1	0	55
B2	0	58
B3	0	49
B4	25	68
B5	25	64
B6	25	71

Bottom Line

- Steel was state-of-the-art for 1911.
- Appreciable low temperature toughness.
- "Brittle Steel Theory" is wrong.

Rivets

Riveting

- 3,000,000 wrought iron and steel rivets
- Hand and hydraulically driven
- Total weight = 1,550 tons

VTM-27-B

OCCURTES Discovery Communications)

Was there a problem with the riveting?

- Historical evidence from Olympic
- Eyewitness testimony
- Sonar evidence
- Metallurgical forensic evidence

Sonar Imaging of Wreck

(from Illustrated Times of London, April 16, 1912)

- Located by counting plates
- Right where Fireman Barrett said it was

New images of parted seams in damage area

(courtesy Discovery Communications)

Rivet Metallurgy

Wrought Iron Rivets

- Commercially pure iron with 1-4% incorporated slag
- Puddled, extruded into a bar, and formed into rivets

Mechanical Properties (avg.)

Orient. YS UTS %

Long. 27 ksi 48 ksi 14 Trans. 18 20 2

(Source: Making, Shaping and Treating of Steel, USS, 1957)

How can a rivet fail?

•Mid-shaft failure

•Head "pops" off

Cupping

