Superfluid Atom Circuits

Gretchen Campbell

Joint Quantum Institute, NIST, University of Maryland

Mid-Atlantic Senior Physicists Group June 21, 2017

A History of Low-Temperature Physics

Superconductivity

Persistent current in superconductors

Atomic physics biased A^History of Low-Temperature Physics

1911 Superconductivity

1912 Persistent current in superconductors

Atomic physics biased A^AHistory of Low-Temperature Physics

1911 Superconductivity

1912 Persistent current in superconductors

1924 Theory of Bose-Einstein condensation **1938** Superfluid liquid ⁴He

1938 Superfluidity related to Bose condensation

Kapítsa

narrow channel

for He

flow

Kapitza P, Nature **141,** 3558 (1938)

Landau

Allen

change in height

glass

discs

⁴He Phase Diagram

Atomic physics biased A^History of Low-Temperature Physics

Kapítsa

Allen L

Landau

Onsager

Feynman Josephson

1911 Superconductivity

- **1912** Persistent current in superconductors
- **1924** Theory of Bose-Einstein condensation

1938 Superfluid liquid ⁴He

1938 Superfluidity related to Bose condensation

- 1941 Landau critical velocity
- 1946 Bogoliubov Excitation Spectrum
- 1949 Quantized vortices (Onsager)
 - **1962** Josephson effect in coupled superconductors

Atomic physics biased A^History of Low-Temperature Physics

Kapítsa

Allen L

Onsager

Feynman J

1911 Superconductivity

- **1912** Persistent current in superconductors
- **1924** Theory of Bose-Einstein condensation

1938 Superfluid liquid ⁴He

1938 Superfluidity related to Bose condensation

1941 Landau critical velocity

1946 Bogoliubov Excitation Spectrum

1949 Quantized vortices (Onsager, Feynman)

1962 Josephson effect in coupled

superconductors

1988 Laser cooling and trapping of neutral atoms

1995 Bose-Einstein condensate of ultra-cold atoms

What is a Quantum Fluid?

Large number of interacting particles occupying the *same* quantum state "macroscopic wave function" $\psi = |\psi|e^{i\phi}$

Density $ho = |\psi|^2$

Velocity $v_s = \frac{\hbar}{m} \nabla \phi$

Chemical potential

$$\mu = \frac{-\partial \phi}{\partial t}$$

Liquid Helium

Neutron Stars

Solid crust 10⁷ grams per cubic cent Solid permeated

with superfluid neutrons 10¹¹ grams per cubic cen Superfluid neutrons and protons 10¹⁴ grams per cubic cen

Superfluid quark matter? 10¹⁵ grams per cubic cen

Atomic Gases

Superfluid Phenomena Landau Two Fluid model

•Two interpenetrating fluids: Normal fluid: π_n , v_n Superfluid p, v,

Superfluid has zero viscosity up to a critical velocity

Landau Criterion:

the flow velocity exceeds the *speed* of sound

An excitation can be created only if $v_c = \min \left\{ \frac{\varepsilon}{p} \right\}$ $v_c = \text{critical velocity}$ $v_c = c$

Superfluid Phenomena

Zero viscosity up to a critical velocity

Quantized Circulation / Persistent Currents

bucket of superfluid

$$\psi = |\psi| e^{i\varphi}$$

$$v = \frac{\hbar}{m} \nabla \varphi$$
 integer

$$\int_{C} \nabla \varphi \cdot dl = 2\pi n$$
 "winding number"

Simply-connected geometry

Multiply-connected geometry

Superfluid Phenomena

Vortex Lattice in Atomic BEC Vortices trapped in center of ring!

KFC

Josephson Effect

$$|\psi_1|e^{i\varphi_1}$$
 $|\psi_2|e^{i\varphi_2}$

Phase change across weak link

$$\gamma = \varphi_2 - \varphi_1$$

Supercurrent through weak link

$$I = I_{\rm c} \sin(\gamma)$$

Atomic Bose-Einstein Condensates

1995- First Atomic BEC Temperatures: T_c ~100nK Condensate size: 10⁵-10⁶ Density: 10¹⁴/cm³

$$\psi = |\psi| e^{i\phi}$$
$$v = \frac{\hbar}{m} \nabla \phi$$

http://www.colorado.edu/physics/2000/bec/

Weakly Interacting:

Chemical potential

 $\mu \propto \rho a_s$

Sound speed $c = \sqrt{\mu/m}$

μ = chemical potential
ρ = condensate density
a_s = s-wave scattering length,
i.e strength of interactions

C. Raman et al. PRL 83, 2502 (1999). J. Abo-Shaeer et al, Science **292,** 476 (2001)

Atomic Bose-Einstein Condensates

Sodium Atomic Beam

Ultra-High Vacuum Cell

Liquid Sodium Metal (500 K)

Laser-Cooled Sodium Atoms (≈100 µK) Transferred to Optical or Magnetic traps for cooling to T_c

Optical Dipole Force

$$F = \frac{1}{2}\alpha(\omega_L)\nabla E^2$$

Below Resonance: $\alpha > 0$ Attracted to high intensity

Above Resonance: $\alpha < 0$ Repelled from high intensity

All hyperfine states can be trapped

BEC and topology?

Interesting effects in toroidal traps:

Reduced dimensionality or topological constraints can give rise to different collective phenomena such as:

•Superfluidity

•Superflow

BEC and topology?

BEC in toroidal trap

Interesting effects in toroidal traps:

Reduced dimensionality or topological constraints can give rise to different collective phenomena such as:

BEC in toroidal trap with barrier

- •Superfluidity
- •Superflow
- Atomtronic circuits
- SQUID analog (Josephson junction)
- Interferometry/Sensors

BEC and topology?

BEC in toroidal trap

Interesting effects in toroidal traps:

Reduced dimensionality or topological constraints can give rise to different collective phenomena such as:

BEC in toroidal trap with barrier

- Superfluidity
- •Superflow
- Atomtronic circuits
- SQUID analog (Josephson junction)
- Interferometry/Sensors

Superfluid(-conducting) circuits

<u>circuits</u>

SQUID Magnetometer

Amplifiers

Eom et al. Nature Phys (2012)

Qubits

Majer et al. Nature (2007)

<u>superfluid circuits</u> ⁴He avi

JQI all-optical toroidal trap for BEC

Other Ring expts: Los Alamos (Boshier) Cambridge (Hadzibabic) Berkeley (Stamper-Kurn)

U. Arizona (Anderson) Oxford (Foot) Strathclyde (Riis)

Absorption Imaging

Spatial Information

Momentum Information

Creating Persistent Currents

"Blue-detuned" laser creates a region of lower density

Increasing Laser Power

Creating Persistent Currents

CirculationQuanta: $v_0 = 0.15 \text{ mm/s}$ $\Omega_0 = 1.2 \text{ Hz}$

Bulk Sound Speed: c = 3.5 mm/s $\Omega_s = 20.35 \text{ Hz}$ $\tau_s = 50 \text{ ms}$

Readout of the persistent current: Time of Flight (Images taken after 10 ms expansion)

Circulation is robust for > 1 min

Limited by: Vacuum (~60 sec. BEC lifetime) Trap nonuniformity (<5 nK)

Quantized Current

Readout of the persistent current:At Rest Ring BECInterferometry

Concentric circles indicate no persistent current

Eckel, S., et.al., Phys. Rev. X, 4, 031052, (2014).

Readout of the persistent current: Rotating Ring BEC Interferometry

- 1. Number of spirals arms tell you the winding number
- 2. Chirality tells you the direction that the current was flowing

Eckel, S., et.al., Phys. Rev. X, 4, 031052, (2014).

Readout of the persistent current: Rotating Ring BEC Interferometry

- 1. Number of spirals arms tell you the winding number
- 2. Chirality tells you the direction that the current was flowing

With a persistent current, you get spirals

Eckel, S., et.al., Phys. Rev. X, 4, 031052, (2014).

Superfluid Circuits

VS

•How can we make an atom SQUID?

Tunnel Junction

 $\gamma = \varphi_2 - \varphi_1$ $I = I_{\rm c} \sin(\gamma)$ SIS

Weak Links

Current-Phase Relation

$$\gamma(I) = \sin^{-1}\left(\frac{I}{I_c}\right) + \frac{LI_c}{h}\frac{I}{I_c}$$

Kinetic/Hydrodynamic Inductance

$$L \equiv \frac{ml}{\rho_{1D}'}$$

γ is the phase difference across the junction

Switch to the rotating frame!

At I_c a phase slip occurs!

Discrete Phase Slips Between Current States

Hysteresis between quantized flow states

Eckel et. Al Nature 506, 200 (2013)

Hysteresis in atomtronic circuits

Hysteresis plays in important role in Electronic circuits

- Memory
- Digital Noise filters
- SQUID magnetometers

We expect hysteresis could be similarly important for atomtronic circuits

Measuring the current-phase relationship

Weak Links

$$\gamma(I) = \sin^{-1} \left(\frac{I}{I_c} \right) + \frac{LI_c}{h} \frac{I}{I_c}$$

The Current-phase relationship determines the behavior of the atom circuit

Using new "Target" trap we can interferometrically measure the phase around the ring

Disk BEC at rest (phase reference)

• Rotating Ring BEC

A similar trap has been used by the Dalibard group in Paris: PRL 113, 135302 (2014)

Time-of-flight

Eckel et. al, PRX **4**, 031052 (2014)

Measuring the current-phase relationship

Current around the ring before phase slips

Current not quantized as weak link is present

Eckel et. al, PRX 4, 031052 (2014)

Measuring the current-phase relationship

Eckel et. al, PRX 4, 031052 (2014)

Critical velocity

Eckel et. Al Nature 506, 200 (2013)

What's missing from GPE?

Hysteresis depends on temperature

Kumar, A., et.al., in preparation.

Conclusions

1. We have observed superfluid hysteresis in a cold-atom circuit:

Eckel, S., et.al., Nature, 506, 200, (2014).

2. Measured the current-phase relationship of our weak link:

Other experiments:

Jendrzejewski, F., Eckel, S., et. al., Phys. Rev. Lett., 113, 045305 (2014)
 Lee, J.G., Eckel. S, et. al., arXiv:1506.08413
 Wang, Yi-Hsieh, et. al., New J. Phys. 17 125012 (2015)
 Kumar, A., et. al., New J. Phys 18 025001 (2016)

Atom Circuits /Na-Er mixture Team Avinash Kumar Neil Anderson Swarnav Banik Monica Gutierrez Hector Sosa Martinez (NP)

Ultracold Strontium team

Ben Reschovsky Neal Pisenti Hiro Miyake (NP) Ananya Sitaram (NP) Peter Elgee (NP) Alex Hesse (NP)

Former Members

Steve Eckel (NIST) Dan Barker (NIST) Fred Jendrzejewski (Heidelberg) Kevin C. Wright (Dartmouth College) R. Brad Blakestad (LPS) Anand Ramanathan (NASA Goddard)

Collaborators

Ian Spielman (JQI) Charles Clark (JQI) Mark Edwards (Georgia Southern) Chris J. Lobb (JQI) Wendell Hill (JQI) William D. Phillips (JQI)