EXTRASOLAR PLANETS

Paul Butler

Carnegie Institution of Washington
 Department of Terrestrial Magnetism

The discovery of extrasolar planets in then past clecade was one of the rnost remarkable achievernenis of the century, anid the culrnination of centuries of speculation.
National Acadlerny of Sciences, 2000 Decadal Review of Astrophysics
Extrasolar planets are one of the 3 pillars of rnodern astrophysics.
The forernost goal of explanet research for the next clecacle is the cliscovery of near'by habitaiole planeis.
National Acaderny of Sciences, 2010 Decaclal Review of Astrophysics

"There are countless suns and countless earths all rotating around their suns in exactly the same way as the seven planets of our system
. . . The countless worlds in the universe are no worse and no less inhabited than our Earth"

Giordano Bruno

 in De L'infinitoUniverso E Mondi

How are exoplanets found?

Direct imaging - nearest stars <30 light years
Transits - distant stars > 2000 lights years
Microlensing - distant stars $>30,000$ light years
Astrometry - nearest stars < 30 light years
Doppler spectroscopy - nearest stars <200 light years

Doppler Shift due to Stellar Wobble

Echelle Spectrometer

$7000 \AA$

Spectrometer Wizard:

Steve Vogt UC Santa Cruz

Key to Doppler Measurements: Wavelength Calibration

Doppler Shift of the Sun

- The radial velocity of the Sun as it orbits the center of mass of the Solar System.

51 PEG SYSTEM

All Dimensions Tp Scale

$0.051 \mathrm{AU}=10.9 \mathrm{R}_{\mathrm{o}}$

The First Decade:

$3 \mathrm{~m} / \mathrm{s}$ Discovery of (Giant) Exoplanets Hot Jupiters
Eccentric Planets

The Next Decadle:

$1 \mathrm{~m} / \mathrm{s}$ Discovery of Super-Earths
Discovery of Potentially Habitable Planets

The Decadle After:

Giant Telescopes \& Adaptive Optics Space-based telescopes?
Direct Imaging \& spectroscopy

P-modes in Solar-type stars

Alpha Cen A (G2 V)

$$
\begin{aligned}
& \begin{array}{lllll}
700 & 720 & 740 & 760 & 780
\end{array} \\
& \text { - Seismology } \\
& \text {-Noise: } \\
& \text { Avg over } \\
& \text { P-modes! } \\
& \text { Time (Minules) } \\
& \text { Arnp ~ } 1.5 \mathrm{mr} / \mathrm{s} \\
& \text { Per = } 5 \text { rnin } \\
& \text { - Seismology } \\
& \text {-Noise: }
\end{aligned}
$$

Single telescope

10 Earth-Masses

$P=50$ day

Single telescope

5 Earth-Masses
 P=50 day

- Nature is cruel and vicious, cloesn't give up secrets easily
- The most interesting planets come in packed systerns
- Lots of planetary signals require lots of data to disentangle

3.15-day

5.7-day
12.9-day

37-day

67-day

433-day

Magellan Planet Finding Spectrometer

Mechanicallavait

Thermal enclosure removed

Calibration lamp system enabled in configuration shown

Thermal control

Instrument sees a $25^{\circ} \mathrm{C}$ isothermal box around it .

- Metal plates embedded in foam enclosure
- Closed-loop, re-circulating glycol solution

On the Nasmyth Platform

Side insulation panel is removed to show instrument interior

- Mobility required since the nasmyth focus is shared with other instruments

2.4 m Automated Planet Finder

'The APF' Planetometer

A high resolution spectrometer optimized for ultra-precision padial velocity work

- Constant gravity environment
- Athermalized optical traín
- High efficiency (35%)

$$
\lambda / \Delta \lambda=100,000 \text { (ior } 1 \text { arcsec slit) }
$$

- Passively compensated space-frame
- $1 \mathrm{~m} / \mathrm{s}$ velocity precision
- Coste: \$2 million (NASA)

seyond 2030

Terrestrial Planet Finider DARWIN

And how will we know a planet supports life?

Look for evidence

Analyze the reflected light from

Look for signs of biological

HD209458: Transiting Plane†

HST detects

 additional sodium absorption due to light passing through planetary atmosphere as planet transits across star
$\mathrm{M}=0.68 \mathrm{MJUP}$
$\mathrm{R}=1.4 \mathrm{RJUP}$

T.Brown \& D.Charbonneau

Known Planets, March 2013

Exoplanet Missions

4 wide-field cameras ($10 \mathrm{~cm}, \mathrm{f} / 1.6$, 23° FOV)

High Earth orbit, in 2:1 resonance with the Moon

Known Planets, March 2013 Predicted TESS Yield

The Drake Equation

Number of communicative civilizations

Rate of formation of suitable stars
Fraction of those stars with planets
Nurnber of "earths" per planetary system
Fraction of those planets where life develops
Fraction of life sites where intelligent life develops
Fraction of planets with technology
Lifetirne of cornmunicating civilizations

Crucial People:

Steve Vogt, UCSC

Steve Shectman, Carnegie Observatories
Jeff Crane, Carnegie Observatories
Dante Minniti, Catolica Santiago
Pamela Arriagada, DTM
Greg Laughlin, UCSC
Matias Diaz, U de Chile
Chris Tinney, UNSW
Hugh Jones, U of Hertfordshire
Brad Carter, U of Southern Queensland

