A cometary fossil inside an asteroidal meteorite

The Solar System today

The Solar System 4.6 billion years ago

Protoplanetary Disks Orion Nebula

HST · WFPC2

PRC95-45b · ST Scl OPO · November 20, 1995 M. J. McCaughrean (MPIA), C. R. O'Dell (Rice University), NASA

How did we get here?

Planets are born in disks of gas and dust

Protoplanetary Disks Orion Nebula

HST · WFPC2

PRC95-45b · ST Scl OPO · November 20, 1995 M. J. McCaughrean (MPIA), C. R. O'Dell (Rice University), NASA

Edge-On Protoplanetary Disk • Orion Nebula Hubble Space Telescope • Wide Field Planetary Camera 2

PRC95-45c • ST Scl OPO • November 20, 1995 • M. J. McCaughrean (MPIA), C. R. O'Dell (Rice University), NASA

Solar System formation

Protoplanetary Disk

Solar System formation

Protoplanetary Disk

Asteroids, KBOs, Oort cloud are leftovers of planet formation, contain dynamical and chemical fossil record of earliest stages of solar system history

Solar System formation

Protoplanetary Disk

Asteroids, KBOs, Oort cloud are leftovers of planet formation, contain dynamical and chemical fossil record of earliest stages of solar system history How can we study them?

Astronomical Observations

Astronomical Observations

Spacecraft Observations

NASA/JHUAPL/SwRI/Thomas Appéré

Astronomical Observations

Spacecraft Observations

NASA/JHUAPL/SwRI/Thomas Appéré

Laboratory analysis of extraterrestrial samples

Meteorites (Rocks from Space!)

Ensisheim meteorite, France, November 7, 1492

New York, October 9, 1992

Where are they found?

 All over the Earth, but deserts best due to long lifetimes against weathering

Where are they from?

Recorders of first few million years (Ma)

O isotopes in Solar System

- Planets "anomalous"
 - ¹⁶O-poor relative to bulk Sun
- This signature intermediate between Solar and an outer solar system ¹⁶O-poor water composition, perhaps recorded by "COS" - cosmic symplectite in Acfer 094 meteorite
 - Photochemical self-shielding in disk or parental cloud?

Meteoritic Organic Matter

- Up to 2% of chondrites
 - Most is acid-insoluble, macromolecular (IOM)
 - Also wide suite of soluble organic molecules (amino acids, carboxylic acids, etc)
 - Isotopic anomalies suggest interstellar/outer solar system heritage

D and ¹⁵N hotspots in meteoritic IOM (Busemann et al 2006)

Presolar Stardust in the Solar System

Pristine nature of presolar grains makes them useful probes of:

- Cosmology
- Stellar nucleosynthesis
- Stellar evolution and mixing
- Galactic chemical evolution
- Dust formation in stellar environments
- Dust processing in the interstellar medium
- Sources of material for Solar System
- Early Solar System processes (disk and planetesimal)

Presolar grain abundances

- SiC roughly constant across chondrite groups
- Silicates strongly sensitive to parent-body processing

Interplanetary Dust Particles (IDPs)

- Very tiny meteorites collected in stratosphere by aircraft
- 1-60 μm in size
- Asteroidal and cometary sources (based on inferred entry velocities)

Cometary IDPs

Enstatite (MgSiO₃) whisker

"GEMS" (Glass with Embedded Metals & Sulfides; J. Bradley)

- Anhydrous
- C-rich (up to 50%)
- Ultra-fine-grained, unequilibrated
- Mix of crystalline and amorphous silicates

Cometary IDPs

Antarctic Micrometeorites (AMMs)

- 10s to 100s μm
 - Collected by filtering snow- or ice-melt
 - Fraction is anhydrous and porous
- Subset are very C-rich
 - Ultracarbonaceous (UC) AMMS (Duprat et al, 2010)

Noguchi et al. 2014

Ultracarbonaceous Micrometeorites

b.

200 nm

Contain GEMS

a.

Some very D-rich

(Duprat et al. 2010, Dartrois et al. (2013,2018), Dobrica et al. (2012), Yabuta et al. (2018) Some contain very N-rich OM

Ultracarbonaceous Micrometeorites

Some very D-rich

(Duprat et al. 2010, Dartrois et al. (2013,2018), Dobrica et al. (2012), Yabuta et al. (2018)

Some contain very N-rich OM

Proposed origin in comets/KBOs

Comet Wild-2 samples

- STABDUST NASA'S COMET SAMPLE RETURN MISSION

- STARDUST mission returned solid samples from JFC Wild-2
- Collected in silica aerogel
- Bear similarities to both primitive meteorites and IDPs
 - Fine-grained crystalline and amorphous silicates
 - Organic matter
 - CAIs/chondrule fragments

nature astronomy

ARTICLES https://doi.org/10.1038/s41550-019-0737-8

A cometary building block in a primitive asteroidal meteorite

Larry R. Nittler^{1*}, Rhonda M. Stroud², Josep M. Trigo-Rodríguez^{3,4}, Bradley T. De Gregorio², Conel M. O'D. Alexander¹, Jemma Davidson^{1,5}, Carles E. Moyano-Cambero^{3,4} and Safoura Tanbakouei^{3,4}

Meteorites originating from primitive C-type asteroids are composed of materials from the Sun's protoplanetary disk, including up to a few per cent organic carbon. In contrast, some interplanetary dust particles and micrometeorites have much higher carbon contents, up to >90%, and are thought to originate from icy outer Solar System bodies and comets. Here we report an approximately 100-µm-diameter very carbon-rich clast, with highly primitive characteristics, in the matrix of a CR2 chondrite, LaPaz Icefield 02342. The clast may represent a cometary building block, largely unsampled in meteorite collections, that was captured by a C-type asteroid during the early stages of planet formation. The existence of this cometary microxenolith supports the idea of a radially inward transport of materials from the outer protoplanetary disk into the CR chondrite reservoir during the formation of planetesimals. Moreover, the H-isotopic composition of the clast is suggestive of a temporal evolution of organic isotopic compositions in the comet-forming region of the disk.

LaPaz Icefield (LAP) 02342

• 42 g Antarctic CR chondrite

 Initial work identified interesting features and heterogeneous aqueous alteration (Trigo-Rodríguez et al. LPSC 2013)

C-rich clast

 Noticed unusual C-rich region of thin section; targeted for additional analysis

C X-ray map

C-rich Clast

- ~100-µm
- >70% C by area
- Na, S rich

C-rich Clast

- ~100-µm
- >70% C by area
- Na, S rich

Secondary Ion Mass Spectrometry (SIMS)

 Major/minor element isotope ratios (>100nm)

Secondary lons

Scanning Transmission Electron Microscopy –Morphology/ mineralogy/ mineralogy/

X-ray Absorption Near-Edge Spectroscopy (Synchrotronbased transmission X-ray microscopy provides information about chemical bonding

Methods

Advanced Light Source (LBNL)

NION UltraSTEM 200-X Naval Research Lab

Presolar Grains

- Matrix presolar silicate abundance at low end for CR chondrites
- C-rich Clast abundance much higher, comparable to the most primitive meteorites and IDPs

- SEM-EDS indicates grains rich in Na, S,O
 - Na sulfate(!)
 - Acfer 094 COS is magnetite-Fe sulfide

Organic Matter

 C-rich clast largely close to terrestrial but with some localized enrichments ("hotspots") of D and ¹⁵N

Organic Matter

 C-rich clast largely close to terrestrial but with some localized enrichments ("hotspots") of D and ¹⁵N

C-XANES

- Details of how material absorbs X-rays reflects chemical bonding
 - Matrix C has typical CR IOM spectrum
 - Clast shows lower abundances of O-bearing functional groups

STEM: Matrix

- Silicates, glass, sulfides, carbonates
- No sulfates

GEMS (Glass with Embedded Metal and Sulfides)

GEMS in IDP

- Common in IDPs, ultracarbonaceous micrometeorites
- Extremely rare/absent in chondrites

 Some early signs of aqueous alteration observed in some GEMS

C-rich Clast

- Distinct from other matrix materials
 - >50 wt% C, highly porous
 - OM isotopically and chemically distinct from matrix OM
 - Higher abundance of presolar silicate grains
 - ¹⁶O-poor Na-rich sulfates
 - GEMS
- Accreted onto a CR parent body as distinct object
- Looks *a lot* like UCAMMS, thought to be cometary in origin, but present in an asteroid!

- At some point, clast was heated, ices melted to form sulfates, slightly alter silicates
- Presolar grains/ GEMS protected by abundant carbon

- At some point, clast was heated, ices melted to form sulfates, slightly alter silicates
- Presolar grains/ GEMS protected by abundant carbon

Implications

- Presence of cometary clast in a C chondrite indicates inward transport of C-rich icy dust during time of chondrite accretion
 - Outward transport of inner SS material to comet accretion region already well established from STARDUST results
- Preservation of chemically fragile materials (e.g., sulfates) with record of early solar system ices!
 - Such materials unlikely to survive atmospheric entry and/or extraction from Antarctic snow/ice in IDPs or UCAMMs
- Need dedicated searches for similar materials in other C chondrites (and material returned from asteroids Bennu and Ryugu by OSIRIS-REx and Hayabusa2!) THANKS!