SWOrRD

For direct detection of specific materials in a complex environment

SWOrRD

- > Swept
 - Wavelength
 - Optical
 - > resonant
 - Raman
 - Detector

RAMAN EFFECT

Raman scattering or the Raman effect (/ ra ː mən/) is the inelastic scattering of a photon. It was discovered by Sir Chandrasekhara Venkata Raman and Kariamanickam Srinivasa Krishnan in liquids,[1] and by Grigory Landsberg and Leonid Mandelstam in crystals.[2][3]

From Wickipedia

Nobel

Laureate

Physics

1930

Quantum "view" of Raman Scattering

- Raman scattering is inelastic and produces photons shifted in wavelength relative to the illuminating light.
 - Stokes → shifted to longer wavelengths
 - Anti-Stokes → shifted to shorter wavelengths
- Raman shifted photons are characteristic of the scattering material and can provide identification and information about molecular structures and bonds. Teflon is shown here.

Escherichia coli

Frequency/wavelength effect on cross section or scattering probability

- Scattering for all components is proportional to the incident frequency to the 4th power
 - Many formulations use the <u>shifted frequency</u> resulting in a correction to the stokes and anti-stokes amplitudes.
- The cross section for individual Raman lines depends on the induced polarizability (induced dipoles) for that state.
 - The cross section will be a function of <u>frequency/wavelength</u>.
 - At shorter wavelengths there may be resonance and the cross section will dramatically increase.
- Raman shifts are an absorption mechanism.

- frequency agile laser operating in the <u>Deep Ultra-Violet</u> (210 – 320 nm) spectral region.
 - Narrow bandwidth laser line, suitable for Raman spectra.
 - Capable of tuning to arbitrary wavelengths in 0.1 nm steps.
 - Rapid (< 1 sec) tuning between wavelengths.
- Produces 2-D Raman spectra that enhance both detection and specificity.
- Operates in other spectral regions from VIS to NIR, up to 2000 nm, as required.

The SWOrRD laser uses a gain-switched Ti:sapphire oscillator, which operates at 5 kHz and generates 18-ns pulses tunable from 700 to 940 nm in 1-nmincrements.

The laser beam is 2 mm in diameter and is well described by a TEM00 mode. Light from the oscillator is frequency converted to either third or fourth harmonics for an ultraviolet (UV) output from 210 to 280 nm, with a spectral width of 4 cm-1.

Tuning the laser to any of 200 wavelengths is computer controlled and synchronized with the angular positions of gratings in the spectrometers.

Switching wavelengths takes 1 min.

Average power in the UV varies with wavelength from a minimum of 1 mW to a maximum of 15 mW

SWOrRD Tunable Laser Source

Based on kHz Optical Parametric Oscillator (OPO) laser technology

Wide Wavelength Range & High Power

Broad tuning range

1kHz with high average power
Line width < 4cm⁻¹
Tunable in 0.1nm steps
< 1 second to tune wavelength

Block Diagram of Experiment

SWOrRD Crew

Figure 3. ORASIS identifying bacteria. Panels show the results of a search for a different bacterial species within each of 15 samples, shown on the horizontal axis. The vertical axis is the ORASIS abundance coefficient indicating the presence or absence of sought-for bacteria.

Potential Applications

(incomplete list)

- Chemicals
 - Warfare agents/Hazardous
 - Content/Composition
- Biologicals
 - Warfare agents
 - Pathogens (in situ?)
 - Tissue
- Pharmaceuticals
 - Identification/contamination/counterfeit
- Mineral Composition
 - Nuclear Material (Ore) point of origin
 - Paints/Inks

<u>Improvements</u>

(incomplete)

- Laser
 - Size/weight/efficiency
- Sample
 - Collection/preparation/handling
 - Illumination/light-collection efficiency
- Spectrometer/Detector
 - Light efficiency
 - Simplicity/size/weight
- Analysis
 - Optimization/discrimination/sensitivity

