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The Magnitude of Our Waste Energy
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d Waste heat is one of our most abundant sources of alternative
energy 4



How Much 1s One Quad?

u.s. 74 Quads 91 Quads

World 225 Quads 365 Quads

O 1 Quad (quadrillion btu) of energy is equivalent to 340,000 tank
cars of crude oil stretched from Miami to Seattle (3,300 miles)
O In the area of energy, scale matters!
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Typical Energy Path in Gasoline Fueled
Internal Combustion Engine Vehicles

Vehicle Operation

L\ Wy

»

25%
Mobility &
Accessories

100%
Combustion

5%
Friction &
Radiated

40%
Exhaust
Gas

Q Today’ s ICE-based vehicles: < 20% of fuel energy is used for propulsion
O > 60% of gasoline energy (waste heat) is not utilized



TE Cooling and Power Generation
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1 Solid state heat engines with electrons and holes as working fluids



Commercial Success of TE
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O > 10 million thermoelectric-based seat systems sold (Feb. 2013, Gentherm PR)



Vehicular TE Waste Heat Recovery
Development

Ford
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Exhaust Data - Chevy Suburban

Exhaust Heat - City Driving Cycle
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O The Suburban was selected as a test vehicle because it simplified the
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Fuel efficiency improvement will be better in small, fuel efficient vehicles
than in large vehicles because the electrical load in small vehicles is a larger

portion of the engine output.
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Opportunity for TE Cooling

Charging challenges

The Volt would run solely on battery power.
The engine's only job would be to -
recharge the battery. That raises r I*/
significant issues w B
because today's batteries g
can't handle many
electrical feeds.

Battery technology:

B Lithium=ion
batteries are still
too large and

Systems drain expensive for mass
that M New air conditioning gg i
car batteries: production
B Stereo systems and heating systems B There have been
b need to be built so the rheating i
# DVD and navigation i overheating issues
systems primary power Source | i, alectronics such

is electricity, not pow
generated from a
gasoline engine.

lf,

B Headlights, tailights
and interior lights

as laptop comput-
ers and handheld
video games.

Thie Detroit News
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Distributed Cooling for High Efficiency
HVAC System

O Reduce onboard AC without sacrifice passenger comfort level
O Improve fuel economy and CO, emission
O Work funded by DOE
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3.02e402

2888402
2848402
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“If all passenger vehicles had ventilated
seats, we estimate that there could be a 7.5
% reduction in national air-conditioning fuel
use. That translates to a savings of 522
million gallons of fuel a year,"

John Rugh, project leader for NREL's Vehicle Ancillary
Loads Reduction Project.
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Typical Industrial Development
- Multi-Scale, Interdisciplinary ...
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$/W — a Program Metric

O $/W (not only ZT) is used for balancing various material, module, and subsystem
options

O $/W can be readily converted to $/Ampg, and $/Ampg < Savings/Ampg is
necessary to provide consumer value

2000k{{{I[IITY[YTTT[TYYY[TTTT[YYTT[TYYTA
1800 ? — $2/gallon é
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1600 —+=-$4/gallon =
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3 Year Fuel Saving per 1mpg FE improvement

FE (mpg)

Consumer Fuel Savings/Ampg =~ $300-400/Ampg (15000 mile/yr., 3yrs., 18-20 mpg)



Approach

— a Couple Materials-System Solution
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Great Power In Solving Problems Using
Coupled Materials-Systems Solutions
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O System requirements can be quickly translated to revised materials requirements

O Material advances can be quickly translated into system impact "



Challenges for TE Technology Development

O Materials
— High ZT: p-type skutterudites, composites...
— Manufacturing and processing for enhanced thermo-
mechanical properties

O Modules
— Joining, diffusion barrier, ...
— Design to mitigate thermal and vibrational stress

O Systems
— Heat exchanger, thermal management, packaging,
electrical interface, mechanical interface, by-pass
— Design to mitigate thermal and vibrational stress

O Integration and Control
— Cycle-averaged output design and control



Mechanical Properties of TE Materials
Battling Flaws

L Of concern is the long term survival of the TE elements under vehicle operating
conditions — vibration, thermal cycle, thermal shock...

 TE materials are typical brittle ceramics, Tensile Strength << Compressive
Strength - manage tensile stress for conservative design

R — Tens (1 V)K
Therm
CTE o E

R:erm = Thermal shock resistance parameter (the larger the better)

Orene = 1€NSile stress or strength
v =Poisson’s ratio L Griffith Cntenon
k = Thermal conductivity

CTE = Coefficient of thermal expansion

- P Tens —
E = Elastic modulus Y /

Kingery, J. Am. Cer. Soc., 38:3-15 (1955).

K,. = Fracture toughness
Y = Crack shape factor
a= Griffith flaw size

O Must minimize flaw sizes 18



Strength-Limiting Flaw Classification For
Brittle Materials

Volume Type

(3-Dimensional)

Surface Type
(2-Dimensional)

Pores Machining Damage

. Pitting
Porous Regions -
Large Grains Ha“d“'?g D_amage
Oxidation

Agglomerates
Inclusions

Surface \Za'

. Edge Type
(1-Dimensional)

Bi-Dimensional
Hybrid Flaw

Edge chipping
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Net-Shape Processing

SPS

Salvador, et al., Science of Advanced Materials

Vol. 3, 577-586, 2011

Sintering

Characteristic Strength (MPa)
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TE Figure of Merit ZT

Power Generation Equation: Cooling Equation:

T
o Tu—Tc ~1+ZT -1 ; VI+ZT -
= T COP = : =
Tn IxZT +oC T —Tc Vi+ZT +1

H
S - Thermopower
g2 g2 i - Total thermal conductivity
L= = k; - Lattice thermal conductivity
krp (K +K)p x, - Electronic thermal conductivity

p - Electrical resistivity

Z has the dimension of T-1, ZT is usually called dimensionless Figure of Merit

d The performance of a TE module is determined by the intrinsic
materials ZT



ZT Mismatch — Device Challenge
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X. Shi, etal, J. Am. Chem. Soc. 133, 7837 (2011)

R. Liu, et al., Intermetallics 19, 1747 (2011)

Y. Wang, et al., Phys. Rev. Lett. 102, 175508 (2009)

L. Xi, et al.,J. Am. Chem. Soc. 131, 5560, (2009).

X. Shi, et al., Phys. Rev. Lett. 95, 185503 (2005). 22



Lattice Thermal Conductivity
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Bipolar Thermal Conductivity

- A Hallmark of Electron-Hole Coupling in Semiconductors

COLD end HOT end

« 4

® 1 %6

@ @

—

1 Electrons and holes (excitons) are coupled at hot end, diffuse
collectively through the material, annihilate at the cold end — give
up energy ~ E,

O This transport of energy is in addition to that carried by electrons
and holes

 This has been reported in many semiconductors — Bi, Te,, Si, Ge,
PbTe.. »



Bipolar Thermal Conductivity

= Theory
K =K, TK, =K, +L 0T
- E
K, =K, +K,+(c,+0 )T B) On%p (5 yay
(c,+0 ) k,T

1. B. Davydov and I. Shmushkevitch, Usp. Fiz. Nauk SSSR 24, 21 (1940)
2. P.J. Price, Phil. Mag. 46, 1252 (1955)

O For intrinsic Semiconductors n = p, Significant bipolar thermal
conductivity when the mobilities of electrons and holes are similar

L
K,=K,+K,+ b —( g+4)(B) ol b= V
P

(1+b)’ kT
L 1/4
- (1+b)

(1+b)



Bipolar Effect for Heavily Dopead
Semiconductors a Longstanding Puzzle

O Surprisingly in the case of heavily doped semiconductors, the
mechanisms for this seemingly simple process remains a puzzle
after decades of research

O For example, in an n-type materials n >> p, the mobilities of the n-
and p-type are usually differ by order(s) of magnitude

bz‘% <<1
Hp

] Noticeable BP effect has been observed in many TE materials



x, Numerical Model

k, c, O, Eg
Ky =Ky — K, — K, =(o,+o )T( )’ . +0') (k T+4)

D o, (I)=en(T)u,(T) GP(T)—en(T)ﬂp(T)

 We can calculate n(T) and p(T) using semiconductor statistics,
provided we have electronic band structure, E., m™ etc.

I/de 2 2 *k T 3/2 l/de _
=N, | S 2EmRD [ e ()
Ec(l+e F) h Ec(l+e F) B

172 * 3/2 2 E —F
p(T):NVT X de :2(27rmV3kBT) ]‘ X dxv 7]§=( v %7
g, (1+e") h g, (1+e™)
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Bipolar Thermal Conductivity - Predictable
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Bipolar Thermal Conduction
- a “Conductivity-Limiting” Phenomenon

For a given material, variation is negligible

E, 2R, 2F()

(%) T
e \&T &) FE)) 1
K'b _O'n O'p

O Dominated by the minority carriers for heavily doped
semiconductors
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Reducing Bipolar Thermal Conductivity

- Band Structure Modulation
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Reducing Bipolar Thermal Conductivity

- Nanostructure Effect

80 2.5x10° 1.8
 (a) |
1 BlzTe3 300 K - 1.5
12.0x10
60
5 __12
5 ?
) 1.5x10°.%
= @ B
- 40 3 E 0.9
*ﬁn s
1.0x10°= &
Y
Sp
20 _ﬁg
S0x10° o
---ﬁ'
0 N 1 1 1 0.0 0.0 BE---a--ni LR | % " 1 M 1
0.00 0.05 0.10 0.15 0.20 300 350 400 450 500
E-E_(eV) T(K)

Bi,Te; made by zone-melting (ZM) and melt-spinning/SPS
(contains nanoprecipitates)

32



Conclusions

Automotive waste heat recovery and thermal management are
ongoing challenges

TE could offer unigue technological solutions

Industrial research is driven by application and system
requirement, and of course cost

There are still plenty of opportunities for exciting engineering
and science.
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