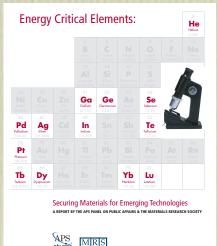
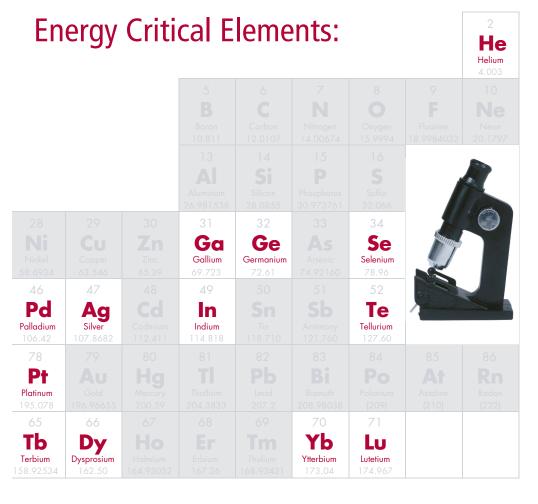

Critical Elements and New Energy Technologies


Insights from a year-long study by[†]

American Physical Society's Panel on Public Affairs (POPA) Materials Research Society

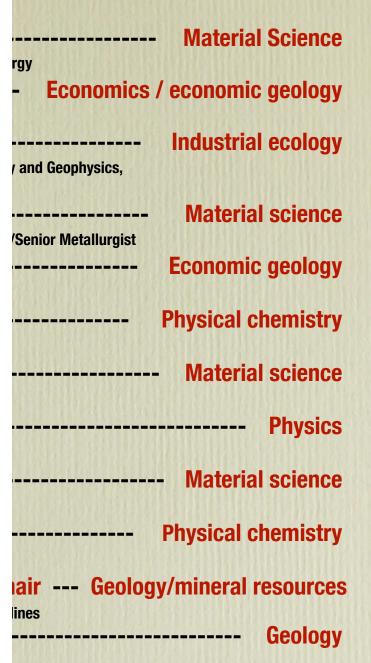
Physics, material science & engineering research

Physics & society policy studies


R L Jaffe MIT

R L Jaffe MIT

February 26, 2012


GERA Workshop APS March meeting, Boston center for theoretical physics

Securing Materials for Emerging Technologies A REPORT BY THE APS PANEL ON PUBLIC AFFAIRS & THE MATERIALS RESEARCH SOCIETY

Tuesday, March 6, 12

February 26, 2012

R L Jaffe MIT

GERA Workshop APS March meeting, Boston center for theoretical physics

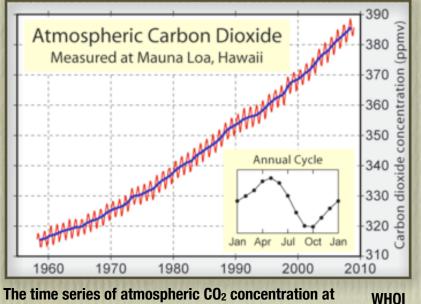
Principal take aways:

- "Energy Critical Elements" a new category of chemical elements with common economic & scientific issues
- "Running out" in general not the issue
- Constraints on availability; interruptions in supply are the issues
- **Domestic (US) mining** A component of a rational ECE policy, but no single country can/should want to be self-sufficient
- Features of a well-conceived federal policy:

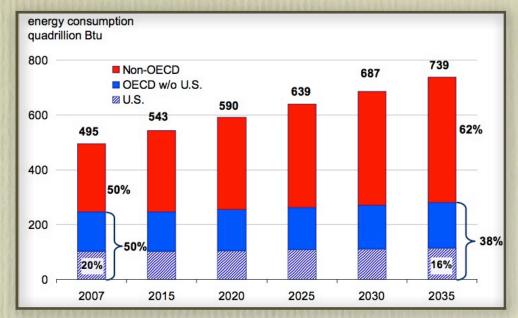
Information – gather, digest, distribute information across the suppy chain

Research – across the supply chain, from geophysical to substitutional, physics, material science, engineering, policy...

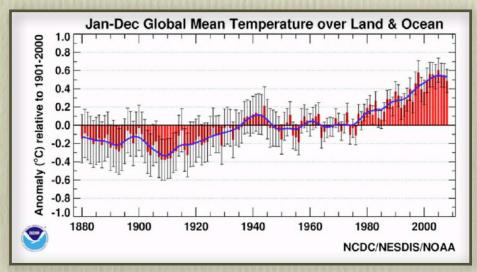
Recycling – "More precious than gold", unsolved technical and economic problems

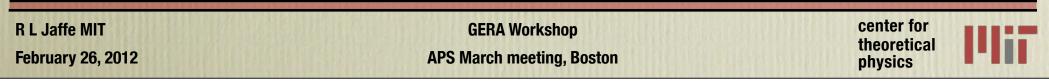

 R L Jaffe MIT
 GERA Workshop
 center for

 February 26, 2012
 APS March meeting, Boston
 center for


 Tuesday, March 6, 12
 12

Energy Critical Elements (ECEs)

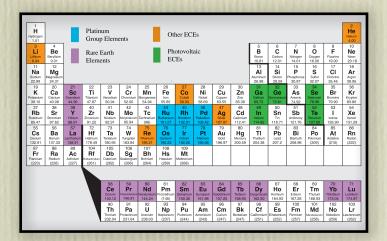

- Increasing demand for energy
- Anthropogenic climate change


The time series of atmospheric CO₂ concentration at Mauna Loa, Hawaii, started by Dave Keeling in 1958.

EIA International Energy Outlook 2010

National Oceanic and Atmospheric Administration

- Increasing demand for energy
- Anthropogenic climate change

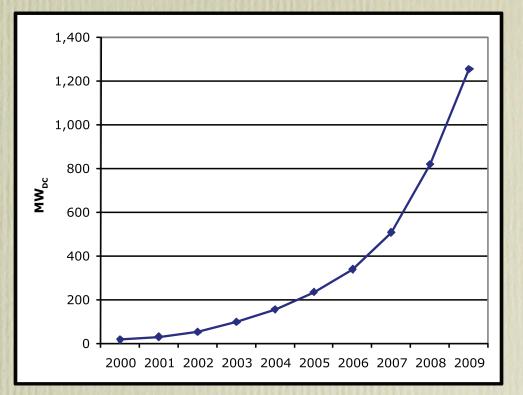


New technologies for harvesting, transmitting, storing, or conserving energy!

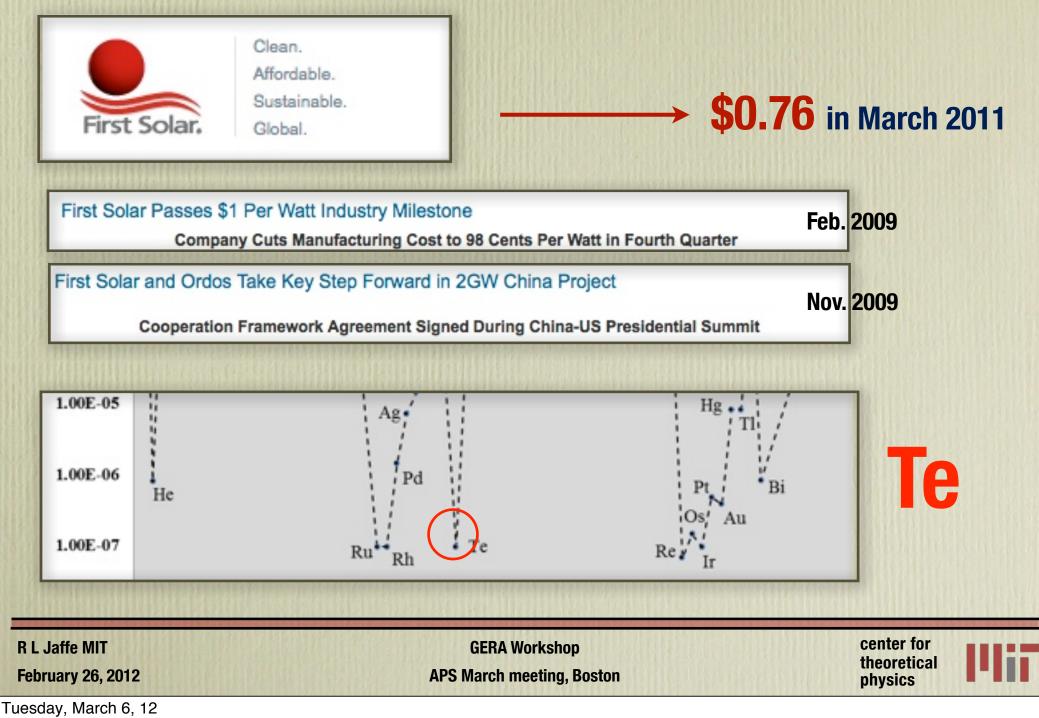
Imaginative scientists & engineers

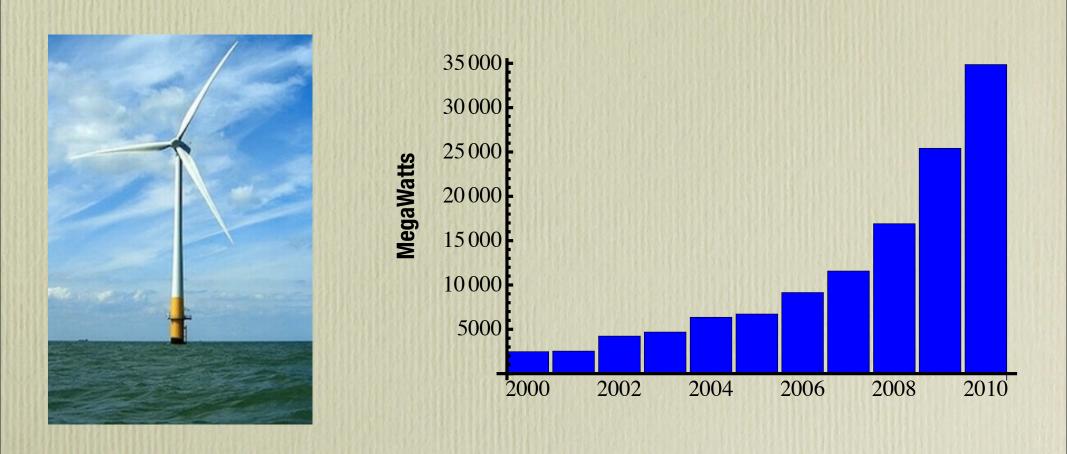
Employing the whole periodic table

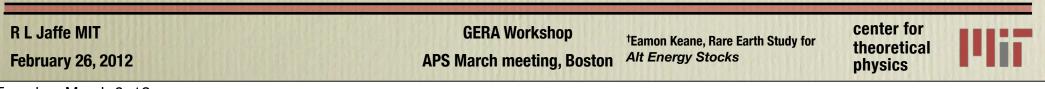
Lab ⇒ Pilot ⇒ Massive Deployment Materials intensive Shortage? ⇒ Inhibit, derail?


Not been widely extracted, traded, or utilized in the past Not the focus of well-established, robust markets.

R L Jaffe MIT February 26, 2012 GERA Workshop APS March meeting, Boston center for theoretical physics


Deployment of grid connected photovoltaic installations in the U.S. 2000-2010




R L Jaffe MIT February 26, 2012	GERA Workshop APS March meeting, Boston	center for theoretical physics
Tuesday, March 6, 12		

Emerging, promising technology: Cadmium telluride thin film photovoltaics

2 Total deployed wind power in the U. S. 2000-2010

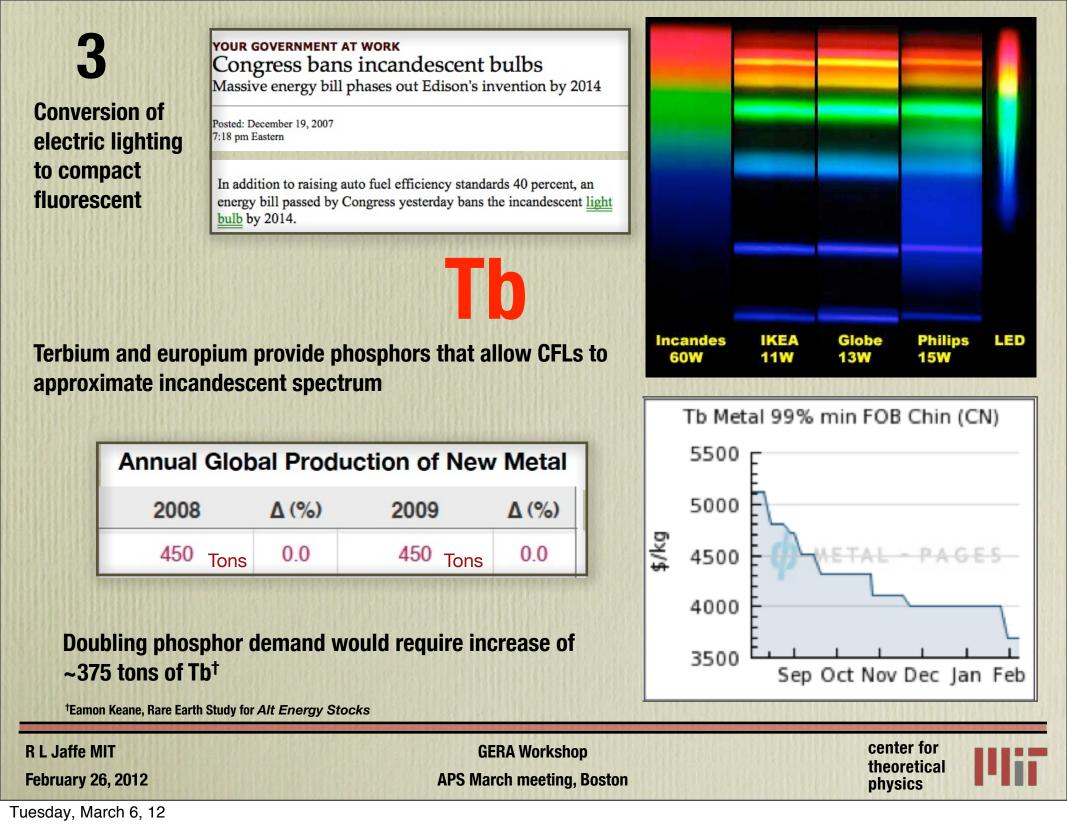
High capacity, esp. open ocean wind turbines require extremely high reliability & synchronous generation

Tons of neodymium-boron-iron (Nd₂Fe₁₄B) magnets in a 10 MW turbine Substitutes?

USGS Mineral Commodity Summary All Rare Earths

	Mine production ^e	
United States	2009	<u>2010</u>
Australia	_	_
Brazil	550	550
China	129,000	130,000
Commonwealth of Independent States	NA	NA
India	2,700	2,700
Malaysia	350	350
Other countries	NA	NA
World total (rounded)	133,000	130,000

Nd/Pr


(Neodymium (and Praeseodymium) sum to about 10-20% of REE ores)[†]

R L Jaffe MIT

February 26, 2012

GERA Workshop APS March meeting, Boston center for theoretical physics

New energy technologies

- Renewable
- CO2 neutral or negative

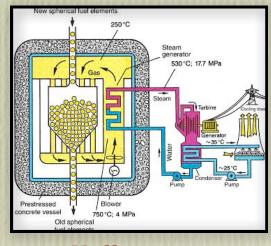
Tellurium Gallium Indium Germanium

Neodymium Praseodymium Cobalt Samarium

Lithium

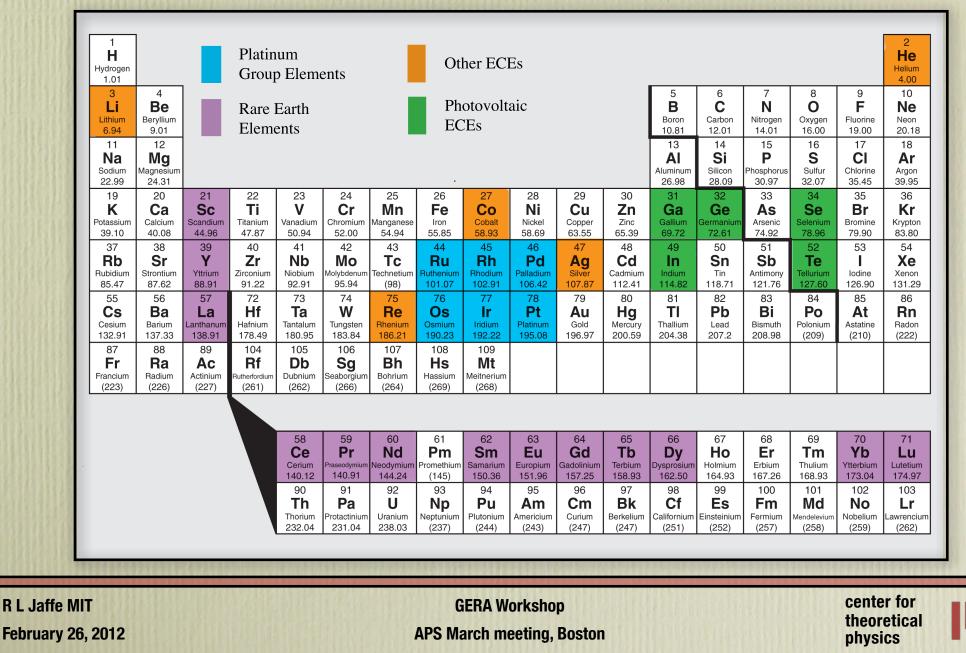
Lanthanum

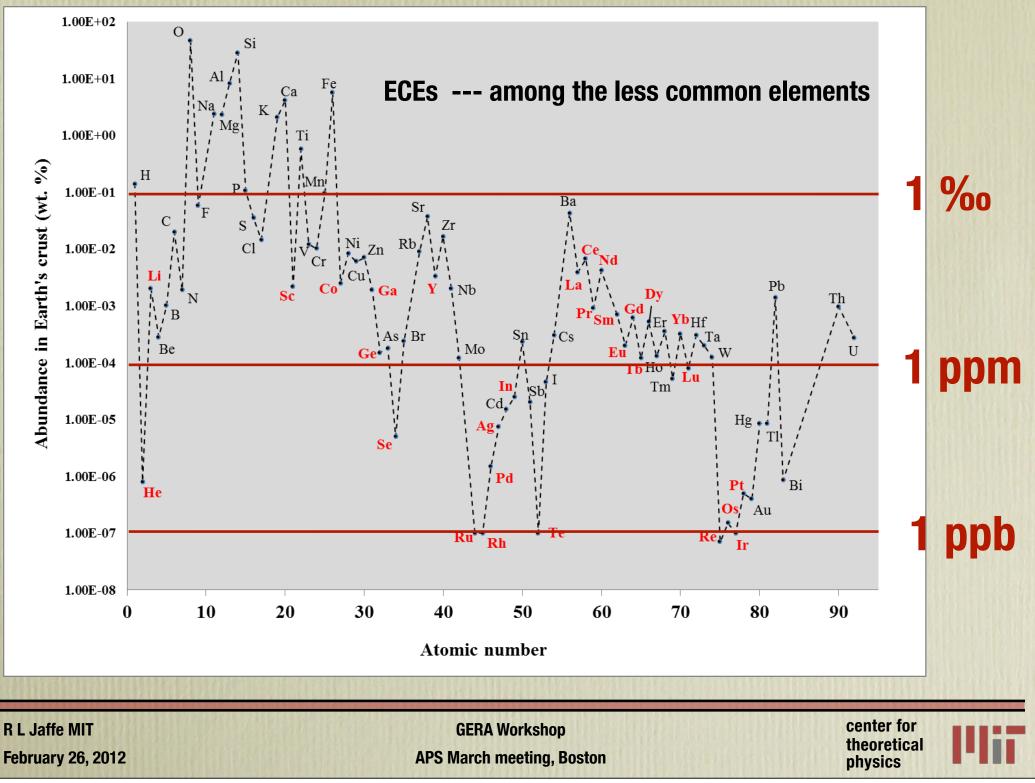
R L Jaffe MIT February 26, 2012


Terbium

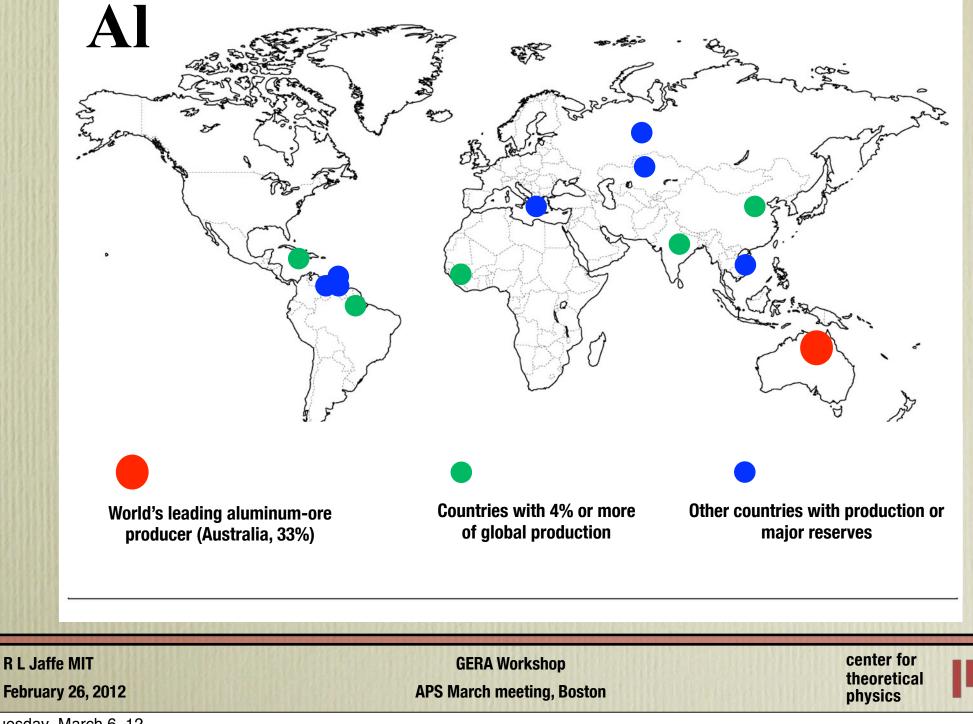
Europium

GERA Workshop APS March meeting, Boston center for theoretical physics

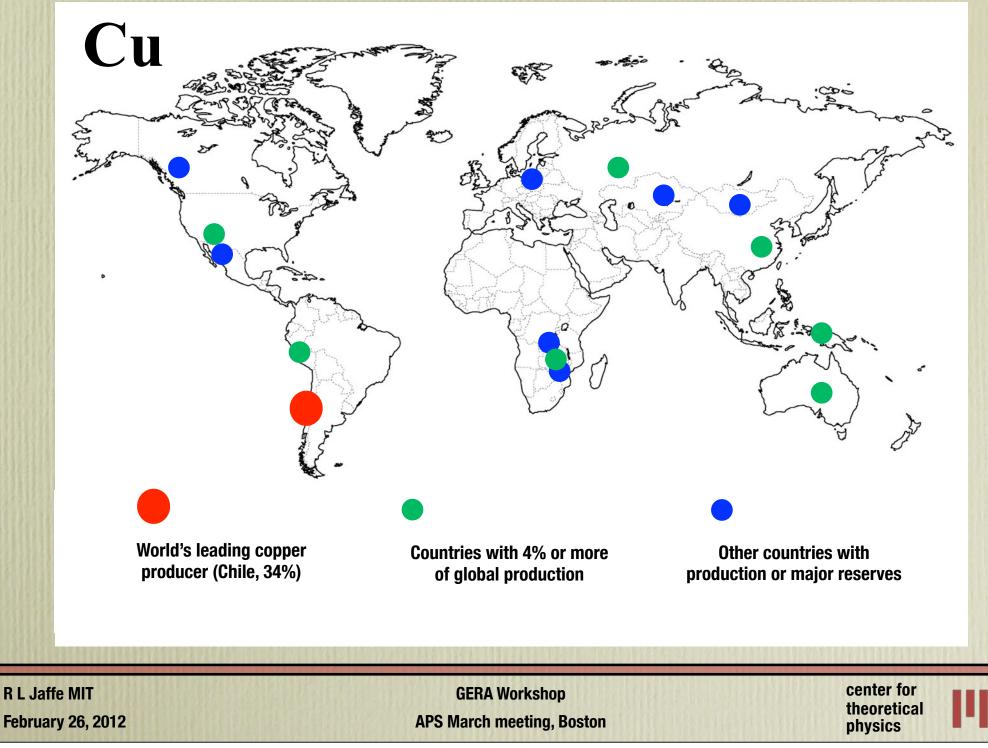

Tuesday, March 6, 12



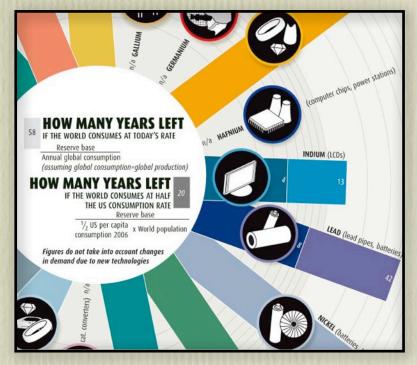
Helium


Possible ECEs today

They would have been different in the past, and They will be different in the future



Why not aluminum? Resources are broadly distributed.


Why not copper? - resources are broadly distributed

II Some comments

The world isn't running out of any ECEs anytime soon.

Claims to the contrary based on misunderstandings of "reserves"

* D. Cohen, New Scientist, May 2007

R L Jaffe MIT February 26, 2012 GERA Workshop APS March meeting, Boston center for theoretical physics

"Mine, baby, mine!"

Clearly (environmentally acceptable, socially responsible) domestic mining is part of the solution, but...

No country can become "ECE independent"

Nor should one want to be: international trade benefits everyone

2010 U.S. NET IMPORT RELIANCE FOR SELECTED NONFUEL MINERAL MATERIALS

		MINERAL MATERIALS	
Commodity	Percent		Major Import Sources (2006-09) ¹
ARSENIC (trioxide)	100		Morocco, China, Belgium
ASBESTOS	100		Canada
BAUXITE and ALUMINA	100		Jamaica, Brazil, Guinea, Australia
CESIUM	100		Canada
FLUORSPAR	100		Mexico, China, South Africa, Mongolia
GRAPHITE (natural) INDIUM	100 100		China, Mexico, Canada, Brazil
MANGANESE	100		China, Canada, Japan, Beigium South Africa, Gabon, China, Australia
MICA, sheet (natural)	100		China, Brazil, Belgium, India
NIOBIUM (columbium)	100		Brazil, Canada, Germany, Estonia
QUARTZ CRYSTAL (Industrial)	100		China, Japan, Russia
RARE EARTHS	100		China, France, Japan, Austria
RUBIDIUM	100		Canada
STRONTIUM	100		Mexico, Germany
TANTALUM	100		Australia, China, Kazakhstan, Germany
THALLIUM	100		Russia, Germany, Netherlands
THORIUM	100		United Kingdom, France, India, Canada
YTTRIUM	100		China, Japan, France
GALLIUM	99 99		Germany, Canada, China, Ukraine
GEMSTONES	99		Israel, India, Belgium, South Africa Belgium, China, United Kingdom, Mexico
BISMUTH PLATINUM	94		South Africa, Germany, United Kingdom, Mexico
ANTIMONY	93		China, Mexico, Belgium
GERMANIUM	90		Belgium, China, Russia, Germany
IODINE	88		Chile, Japan
RHENIUM	86		Chile, Netherlands
DIAMOND (dust, grit and powder)	85		China, Ireland, Russia, Republic of Korea
STONE (dimension)	85		Brazil, China, Italy, Turkey
POTASH	83		Canada, Belarus, Russia
COBALT	81		Norway, Russia, China, Canada
TITANIUM MINERAL CONCENTRA			South Africa, Australia, Canada, Mozambique
SILICON CARBIDE	77		China, Venezuela, Netherlands, Romania
ZINC	77		Canada, Peru, Mexico, Ireland
BARITE TIN	76 69		China, India Desu Belluta, China, Indepesia
VANADIUM	69		Peru, Bolivia, China, Indonesia Rep. of Korea, Czech Republic, Canada, Austria
TUNGSTEN	68		China, Canada, Germany, Bolivia
SILVER	65		Mexico, Canada, Peru, Chile
TITANIUM (sponge)	64		Kazakhstan, Japan, Ukraine, Russia
PEAT	59		Canada
PALLADIUM	58		Russia, South Africa, United Kingdom, Belgium
CHROMIUM	56		South Africa, Kazakhstan, Russia, China
MAGNESIUM COMPOUNDS	53		China, Austria, Canada, Brazil
BERYLLIUM	47		Kazakhstan, Kenya, Germany, Ireland
SILICON (ferrosilicon)	44 43		China, Russia, Venezuela, Canada
LITHIUM NICKEL	43		Chile, Argentina, China Canada, Russia, Australia, Norway
NITROGEN (fixed), AMMONIA	43		Trinidad and Tobago, Russia, Canada, Ukraine
ALUMINUM	38		Canada, Russia, China, Mexico
MAGNESIUM METAL	34		Canada, Israel, China, Russia
GOLD	33		Canada, Mexico, Peru, Chile
COPPER	30		Chile, Canada, Peru, Mexico
MICA, scrap and flake (natural)	27		Canada, China, India, Finland
GARNET (Industrial)	25		India, Australia, China, Canada
PERLITE	25		Greece
SALT	24		Canada, Chile, Mexico, The Bahamas
VERMICULITE	22		China, South Africa
SULFUR GYPSUM	17 15		Canada, Mexico, Venezuela
PHOSPHATE ROCK	15		Canada, Mexico, Spain Morocco
IRON and STEEL SLAG	10		Japan, Canada, Italy, South Africa
CEMENT	8		China, Canada, Republic of Korea, Talwan
IRON and STEEL	ž		Canada, European Union, China, Mexico
PUMICE	7		Greece, Turkey, Iceland, Mexico
DIAMOND (natural industrial stone)			Botswana, South Africa, Namibia, India
LIME	2	T	Canada, Mexico
STONE (crushed)	1	T	Canada, Mexico, The Bahamas
			•

USGS 2011 Mineral Commodity Summary

R L Jaffe MITGERA Workshopcenter for
theoretical
physicsFebruary 26, 2012APS March meeting, Bostonphysics

Stockpiling disincentive to innovation, unintended economic consequences.

 In the grand scheme of things, each element will go through the process of adjustment of application to abundance that has happened (and recurred) for better known elements in the past

Gold and Aluminum

R L Jaffe MIT February 26, 2012 GERA Workshop APS March meeting, Boston

III. ECE's: Constraints on availability

Absolute abundance & concentration

GERMANIUM...

Though not intrinsically rare, they are not mineralized efficiently by geological processes, and do not occur in viable ores.

対 Geopolitical risks

RARE EARTHS (REEs) & PLATINUM GROUP

- Chance has concentrated them in one or two large or rich deposits.
- **Complex economics and politics have led to dominance of a single or small number** of countries, allowing market manipulation and raising political issues.

Risks of joint production

INDIUM, GALLIUM, TELLURIUM...

They are only recovered as by-products in extraction of more common metals. Raise a host of (fascinating) economic issues (viz. tellurium)

Environmental and social concerns

Developed world will not accept environmental disruption. Countries willing to tolerate environmental degradation for short term gain can dominate markets. Rising environmental consciousness renders this unstable.

Response times in production & utilization LITHIUM, LANTHANUM

It takes 5-15 years to bring new sources online and/or research and develop substitutes.

R L Jaffe MIT

February 26, 2012

GERA Workshop

APS March meeting, Boston

REEs...

ABSOLUTE ABUNDANCE & CONCENTRATION

- 12 "rock forming elements" account for > 99% of Earth's crust.
- Local enrichment of scarce elements by substitution, eg. Se & Te for S
- More frequently isolated substitution into crystal structure
- Well known rare elements --- gold, silver, platinum --- usually have exceptional chemistry
- Issues:
 - poorly understood geology, prospecting
 - low grade ores
 - unfamiliar metallurgy
 - greater waste and environmental problems

16 S Sulfur 32.07 34 Selenium 78.96 52 Tel Tellurium 127.60

Germanium

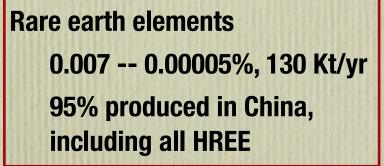
0.00015%, 140 t/yr, ~\$1000/kg

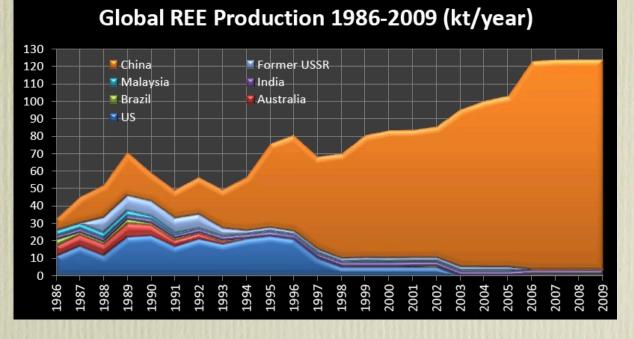
Price limits use in PV to high end CSV (concentrated solar voltaics)

R L Jaffe MIT

February 26, 2012

GERA Workshop


APS March meeting, Boston

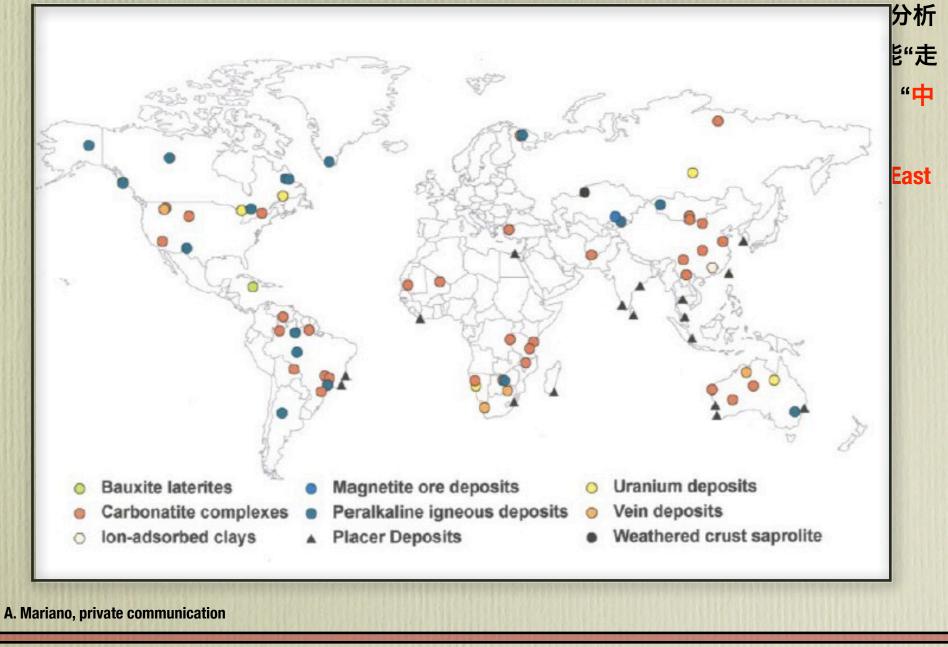


GEOPOLITICS

- Reliance on imports is not a priori bad
- US relies on imports for over 90% of most ECEs
- Problems arise when happenstance or monopoly economic policies concentrate production in one or a very few countries
- Platinum & palladium: World's reserves are overwhelmingly concentrated in SA (Bushveld complex). Production dominated by SA and Russia.

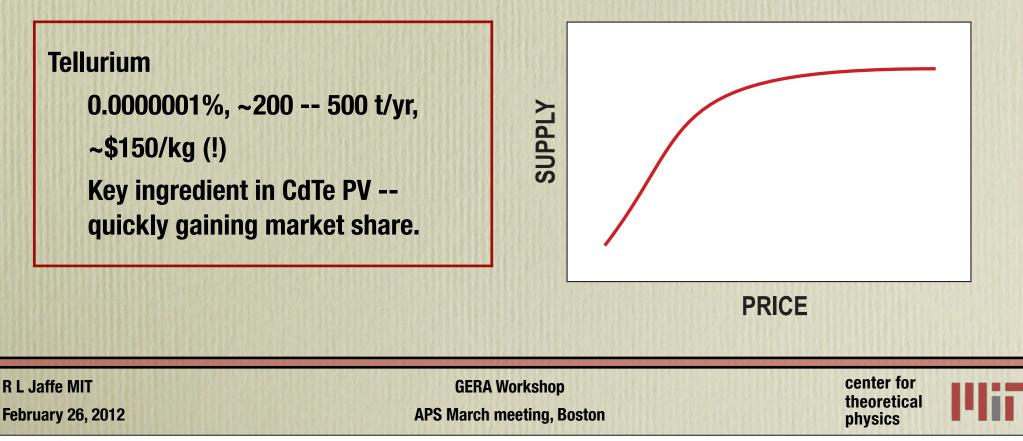
R L Jaffe MIT

February 26, 2012


Eamon Keane BE, ME GERA Workshop eamon.Reane Fouctionnect.ie APSe Manchern Acted ting, Boston

center for theoretical physics

GEOPOLITICS (CONT'D)

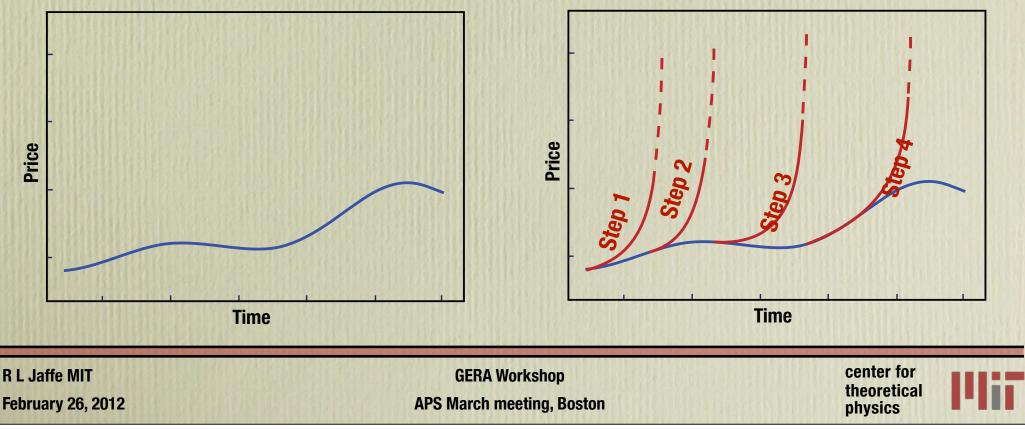

BAYAN OBO IRON/REE MINE Mongolia

COPRODUCTION ECONOMICS

- Many ECE's are now produced entirely as by-products of the refining of major metals.
- **Tellurium** (copper), **indium** & **germanium** (zinc), **gallium** (aluminum)
- Prices are artificially low (economy of scope) until the coproduction saturates. By-product does not drive production of main product. Price demand inelasticity.

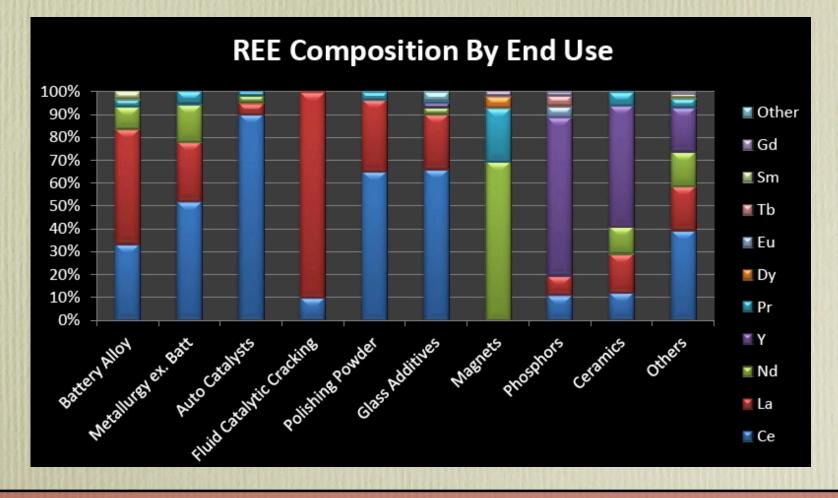
Example — tellurium — coproduction with copper

		Main product	Byproduct
		Cu	Те
	Global production (metric tons)	16,200,000	200 500 ?
	Price (\$/kg)	\$7.50	\$210
	Value of global production (\$)	\$122 x 10 ⁹	\$105 x 10 ⁶
	Ratio of global value to Cu		1200:1
R L Jaffe MIT February 26, 2012		GERA Workshop arch meeting, Boston	center for theoretical physics


Tuesday, March 6, 12

R

Fe


Example — tellurium (continued)

- Step 1 Increase Te recovery from electrolytic copper refining
- **Step 2** Replace Te in traditional applications
- Step 3 Recover Te from other sulfide ores (Zn, Pb, ...)
- Step 4 Shift Cu refining away from solvent extraction
- Step 5 Mine and refine (low percentage) primary Te ores

COPRODUCTION ECONOMICS (CONT'D)

- The special case of the rare earths!
- The REE are all co-produced with one another.
- LREE (Sc, Ce, Pr, Nd, Pm, Sm, Eu, Gd) versus HREE (Y, Tb, Dy, Ho, Er, Tm, Yb, Lu)
- Some REE will always be in undersupply, while others will always be in oversupply

R L Jaffe MIT February 26, 2012 GERA Workshop Eamon Keane BE, ME <u>eamon.keane1@ucdconnect.ie</u> September 2010 APS March meeting, Boston center for theoretical physics

ENVIRONMENTAL AND SOCIAL CONCERNS

 Decades of increasing vigilance w.r.t. externalities, esp. environmental and social.

ThO ₂	0.09	3.75	1.20	0.5
	0.09	5.73	1.26	6.5
 Y203	0.04	0.83	30.86	1.17
Pr6011	3.02	2.98	0.51	2.98
CeO2	36.81	25.66	4.22	27.20
La ₂ 0 ₃	26.06	11.55	1.75	13.46
	Bastnaesite Mt. Pass	Monazite Australia	Xenotime Malaysia	Monazite Australia

R L Jaffe MIT	GERA Workshop	center for
February 26, 2012	APS March meeting, Boston	theoretical physics

ENVIRONMENTAL AND SOCIAL CONCERNS (CONT'D)

- History of U. S. Mountain Pass, California REE mine.
- Once was world's leading producer of REE; first operations in early 1950's; large scale in 1960's through 1990's
- Thorium & radium contamination of wastewater spills caused closing of mine in 1990's
- Molycorp has been trying to reopen the mine for better part of decade.

Desert Tortoise Evaporating pools Major new facilities Permitting, stakeholder buy-in \$500M in financing

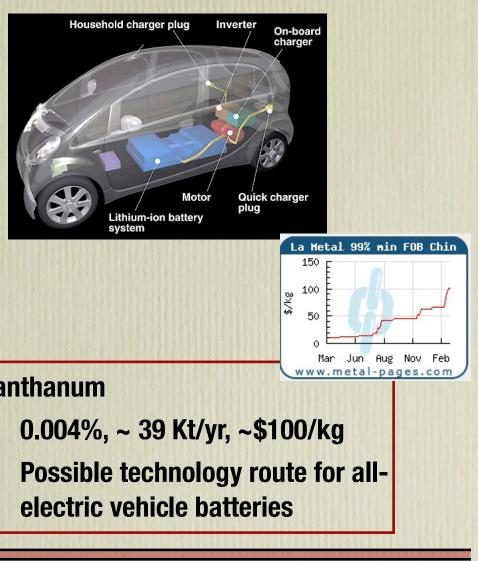
R L Jaffe MIT February 26, 2012 GERA Workshop APS March meeting, Boston center for theoretical physics

RESPONSE TIMES IN PRODUCTION AND UTILIZATION

- **5** -- 15 years from certification of resource to production of refined metals. •
- 5 -- 15 years from conceptual design to production for novel technology •

Lithium 99.00% - \$/LB

Sep 2008 - Nov 2008


36.00 34.50

33.00 31.50

30.00 28.50

Batteries for all electric vehicles

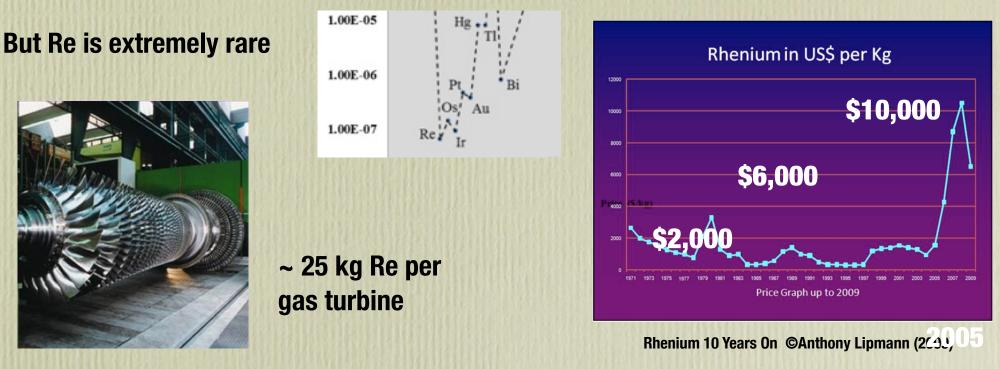
- Lithium or NiMH?
- Lithium or Lanthanum? •
- Typical Toyota Prius uses 10 25 kg of La •
- **Chevy Volt uses 400 lb of Li-ion batteries**
- Which technology will win?

Lithium

0.002%, ~ 25 Kt/yr, ~\$70/kg Possible technology route for allelectric vehicle batteries

Lanthanum

R L Jaffe MIT


February 26, 2012

GERA Workshop APS March meeting, Boston center for theoretical physics

Interlude: The story of Rhenium: Information / Research & Development / Recycling

The search for a low rhenium content turbine alloy for CCGT (Brayton) cycle power

GE (major turbine manufacturer and Re consumer) anticipated supply constraint and launched a two pronged program in 2005:

- Recycle pre-consumer scrap to forestall shortage
- Develop new, low (zero?) content Re alloys
- Success over 5 years.

P. J. Fink, J. L. Miller, and D. G. Konitzer, J. Minerals Metals Mater. Soc. 62, 57 (2010).

center for

theoretical

physics

GERA Workshop APS March meeting, Boston

Tuesday, March 6, 12

February 26, 2012

R L Jaffe MIT

IV. Moral of the Rhenium story and study policy recommendations

- Information GE knew the Re market in detail from years of study
- Recycling GE had the waste stream from decommissioned turbines and preconsumer scrap, and the high-tech expertise to extract Re from scrap alloys
- Research GE had the resources to mount a long range research effort on substitution
- Most companies do not have these resources, nor do university researchers.
- A legitimate role of government...

R L Jaffe MIT February 26, 2012 GERA Workshop APS March meeting, Boston

Recommendations for federal policy

I. COORDINATION

Complex, multi-dimensional issue: COMMERCE, DEFENSE, ENERGY, INTERIOR (USGS), STATE, TRANSPORTATION, EPA, OMB, COUNCIL OF ECONOMIC ADVISORS, US-TRADE REPRESENTATIVE...

Executive Office of Science and Technology Policy (OSTP) should coordinate federal response.

R L Jaffe MIT February 26, 2012 GERA Workshop APS March meeting, Boston

II. INFORMATION

High quality information is extremely valuable, promotes transparency.

Federal government should gather, analyze, and disseminate information on ECEs

From discovered and potential resources, to production, use, trade, disposal, and recycling.

Model ~ EIA

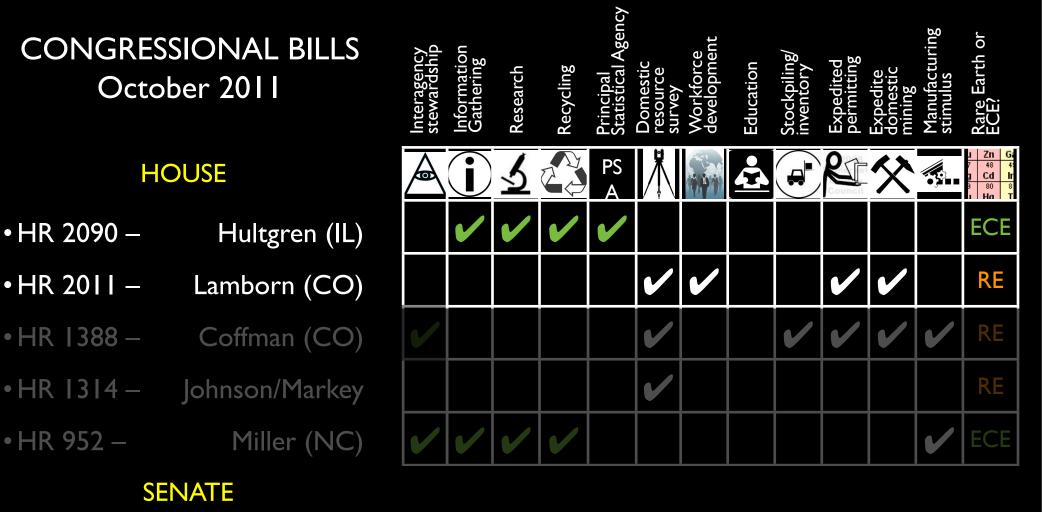
Regularly survey emerging energy technologies and the supply chain for elements throughout the periodic table, with the aim of identifying critical applications as well as potential shortfalls.

R L Jaffe MIT	GERA Workshop	center for
February 26, 2012	APS March meeting, Boston	theoretical physics
Tuesday, March 6, 12		

III. RESEARCH, DEVELOPMENT, AND WORKFORCE

Federal R&D: focused on energy-critical elements and possible substitutes. GEOLOGICAL DEPOSIT MODELING, MINERAL EXTRACTION AND PROCESSING, MATERIAL CHARACTERIZATION AND SUBSTITUTION, UTILIZATION, MANUFACTURING, RECYCLING, AND LIFE-

CYCLE ANALYSIS.


R L Jaffe MIT GERA Workshop February 26, 2012 APS March meeting, Boston center for theoretical physics

IV. THE ROLE OF MATERIAL EFFICIENCY

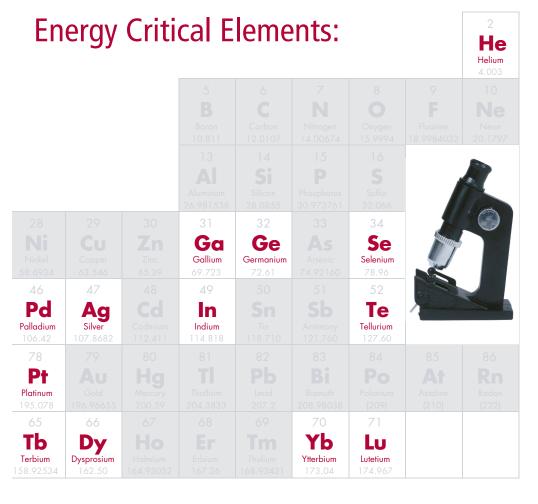
The federal government should establish a consumer-oriented "Critical Materials" designation for ECE-related products. The certification requirements should include the choice of materials that minimize concerns related to scarcity and toxicity, the ease of disassembly, the availability of appropriate recycling technology, and the potential for functional as opposed to non-functional recycling.


Steps should be taken to improve rates of post-consumer collection of industrial and consumer products containing ECEs, beginning with an examination of the numerous methods being explored and implemented in various states and countries.

R L Jaffe MIT February 26, 2012	GERA Workshop APS March meeting, Boston	center for theoretical physics
Tuesday, March 6, 12		

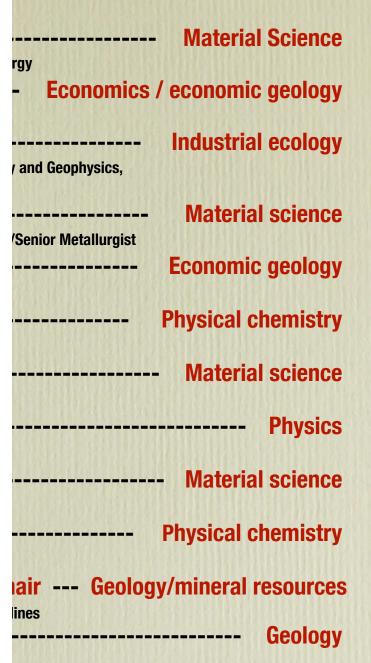
•S 383 –	Udall (CO)
•S 42I –	Hagan (NC)

•SIII3 – Murkowski (AK)


R L Jaffe MIT

February 26, 2012

GERA Workshop APS March meeting, Boston



Securing Materials for Emerging Technologies A REPORT BY THE APS PANEL ON PUBLIC AFFAIRS & THE MATERIALS RESEARCH SOCIETY

GERA Workshop

APS March meeting, Boston

center for

theoretical

physics

Tuesday, March 6, 12

February 26, 2012

R L Jaffe MIT