High Efficiency Photovoltaics: Meeting the Terawatt Challenge

Harry Atwater Thomas J. Watson Laboratories of Applied Physics California Institute of Technology

Photovoltaics for Energy Supply
Limits to Photovoltaic Efficiency
PV Technology Comparison: Si, Thin Films, Concentrators, Nanostructures
Multijunction PV: Path to Ultrahigh Efficiency
Nanostructures in Photovoltaics

Crystalline Silicon vs. other Solar Technology

- Now appears that c-Si can eventually reach DOE cost goals
- Thin film modules can get there first, but efficiency limits, materials issues
- Innovative and disruptive technologies must have "film-like" cost/area and >20% efficiency

3/15/09 H. Atwater Caltech

Materials: CdTe, Culn_xGa_{1-x}Se₂, poly-Si, amorphous Si

CdTe Thin Film

- •Q4 2008 \$1.08/Watt
- •56% gross margin
- •750 MW production capacity

3/15/09 H. Atwater Caltech

PV Resources: Materials

*from P.H. Stauffer et al, Rare Earth Elements - Critical Resources for High Technology, USGS (2002)

PV Materials by Production and Reserve

			Annual PV	Production	(GigaWatts/year
PV Feedstoc	k Production and	Reserve Base	0.3	1.5	50 (2020)
Feedstock	World	Reserve	PV Fee	dstock Cons	umption
Material	(1000s of ton/year)	Base* (1000s of ton/year)	(1 (2000)	1000s of ton/yea (2005)	ır) (2020)
Si (c-Si)	1 000	abundant	4 ⁽¹⁾	15 ⁽²⁾	150 ⁽³⁾
Te ⁽⁴⁾ (CdTe)	0.3(Cu)	47	0.030	0.15	5
In ⁽⁴⁾ (CIGS)	0.5 (Zn)	6	0.030	0.15	5
Ga ⁽⁵⁾ (GaAs)	184 (AI)	>1100	0.008	0.041	1.4
As ⁽⁵) (GaAs)	59	1100	0.008	0.041	1.4

Material use in module production (grams / Watt): (1) 13, (2) 10, (3) 3, (4) 0.1, (5) 0.025

*: Resources that are currently economic, marginally economic and some of those that are currently subeconomic

Sources: US Geological Survey 2004 (http://minerals.usgs.gov/minerals/pubs/mcs/), M.A. Green, Prog. Phot. 14 (2006) 743-751; G. Willeke, Fraunhofer Institut

Si and Te Data From G. Willeke, Fraunhofer ISE

Cost/Efficiency of PV Technology Argues for High Efficiency

3/15/09 H. Atwater Caltech

Single Junction Solar Cells

PV Figures of Merit

Maximum Solar Cell Efficiencies

(Henrv)

Measured Theoretical

References

- C. H. Henry, "Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells," *J. Appl. Phys.*, **51**, 4494 (1980).
- W. Shockley and H. J. Queisser, "Detailed Balance Limit of Efficiency of *p-n* Junction Solar Cells," *J. Appl. Phys.*, **32**, 510 (1961).
- J. H. Werner, S. Kolodinski, and H. J. Queisser, "Novel Optimization Principles and Efficiency Limits for Semiconductor Solar Cells," *Phys. Rev. Lett.*, **72**, 3851 (1994).
- M. Green, K. Emery, D. L. King, Y. Hisikawa, W. Warta, "Solar Cell Efficiency Tables (Version 27)", *Progress in Photovoltaics*, 14, 45 (2006)
- R. R. King *et al.*, "Pathways to 40%-Efficient Concentrator Photovoltaics," *Proc. 20th European Photovoltaic Solar Energy Conf.*, Barcelona, Spain, 6-10 June 2005.
- R. R. King *et al.*, "Lattice-Matched and Metamorphic GalnP/ GalnAs/ Ge Concentrator Solar Cells," *Proc. 3rd World Conf. on Photovoltaic Energy Conversion*, May 11-18, 2003, Osaka, Japan, p 622.
- A. Slade, V. Garboushian, "27.6%-Efficient Silicon Concentrator Cell for Mass Production," *Proc. 15th Int'l. Photovoltaic Science and Engineering Conf.*, Beijing, China, Oct. 2005.
- R. P. Gale et al., "High-Efficiency GaAs/CuInSe₂ and AlGaAs/CuInSe₂ Thin-Film Tandem Solar Cells," Proc. 21st IEEE Photovoltaic Specialists Conf., Kissimmee, Florida, May 1990.
- J. Zhao, A. Wang, M. A. Green, F. Ferrazza, "Novel 19.8%-efficient 'honeycomb' textured multicrystalline and 24.4% monocrystalline silicon solar cells," *Appl. Phys. Lett.*, **73**, 1991 (1998).

3-gap GalnP/GaAs/Ge cell @240suns (Fraunhofer)

Phys. Rev. Lett., 72, 3851 (1994).
ta, "Solar Cell Efficiency Tables
2006)
rator Photovoltaics," Proc. 20th
elona, Spain, 6-10 June 2005.
GalnP/ GalnAs/ Ge Concentrator= $1 - TS/E = 1 - (4/3)T/T_{sun}$ (Henry)
Ideal 36-gap solar cell at 1000 suns (H

5800 K

93%

56%Ideal 3-gap solar cell at 1000 suns(Henry)50%Ideal 2-gap solar cell at 1000 suns(Henry)

95% Carnot eff. = 1 – T/T_{sun} T = 300 K, T_{sun} \approx

Max. eff. of solar energy conversion

3-gap Gain /GaAs/Ge cen @2+05uns (i raunioier)	
41.1 %	44% Ultimate eff. of device with cutoff E _g : (Shockley, Queisser)
3-gap GalnP/GaAs/Ge cell @ 1 sun (Spectrolab) 32.0%	 43% 1-gap cell at 1 sun with carrier multiplication (>1 e-h pair per photon) (Werner, Kolodinski, Queisser)
1-gap solar cell (Si, 1.12 eV) @92 suns (Amonix)	37% Ideal 1-gap solar cell at 1000 suns (Henry)
27.6% 1-gap solar cell (GaAs, 1.424 eV) @1 sun (Kopin) 25.1%	31%Ideal 1-gap solar cell at 1 sun(Henry)30%Detailed balance limit of 1 gap solar cell at 1
1-gap solar cell (silicon, 1.12 eV) @1 sun (UNSW)	sun (Shockley, Queisser)
3/15/09 25.0 %	Richard King

Detailed Balance Limit for Solar Cell Efficiency

Open Circuit Voltage Offset from Bandgap: Photon Entropy $\Delta F = \Delta H - T \Delta S$

 $qV_{oc} = E_g - T k ln \Omega = E_q - kT ln 46,200 = E_q - 10.7 kT$

3/15/09 H. Atwater Caltech

Richard King

Single-junction Cells vs. Multijunctions

3/15/09 H. Atwater Caltech

Concentrator Photovoltaics: An Approach to Reap Benefit from Expensive Ultrahigh Efficiency Cells

UMUWA SOLAR POWER STATION

3/15/09 H. Atwater Caltech

Module and BOS cost assumptions from: [1] Swanson, Prog. Photovolt. Res. Appl. 8, 93-111 (2000).

Detailed Balance Models

Assumptions:

P. Wurfel, Journal of Physics C: Solid State Physics 15, 3967-3985 (1982)

- Perfect absorption of incident photons
- Photo-current loss through radiative reemission:

Detailed Balance of First Subcell

$$\frac{J_1}{q} = {}^{AM1.5}N - {}^{rad}N_1$$

$$\frac{J_n}{q} = {}^{AM1.5}N + {}^{rad}N_{n-1} - {}^{rad}N_n$$

Detailed Balance:E1 (GalnP)Ge-based Triple-junctionE2 (GaAs)Isoefficiency PlotGe

Detailed Balance: GalnP/GaAs-Based Four-Junction Isoefficiency Plot

- Narrow-gap bottom subcell eases current-matching requirements for E₃
- Iso-efficiency contours → atmospheric absorption

Detailed Balance: Summary

Configuration	Optimal Subcell Bandgaps (eV)	Maximum Efficiency
Ge-Based Triple-Junction (Series connected)	1.90, 1.42, 0.67	46.3%
Si-Based Triple-Junction (Series connected)	2.00, 1.49, 1.12	51.2%
Optimal Four-Junction (Series connected)	2.00, 1.49, 1.12, 0.72	57.9%
GalnP/GaAs-Based Four-Junction (Series connected)	1.90, 1.42, 1.02, 0.60	54.9%

Efficiency vs. Bandgap Variation in 4 Junction Cell

Variation of efficiency of optimal 100 sun AM1.5 series-connected four-junction solar cell with changes of each subcell bandgap. Each subcell is varied independently, maintaining the other subcells at their optimum bandgap of 2.00, 1.49, 1.12, and 0.72 eV respectively.

Improvements in Solar Cell Efficiencies

3/15/09 H. Atwater Caltech

US DOE

Lattice Matched and Metamorphic 3-Junction Cell Cross-Sections

Lattice-Matched (LM)

Lattice-Mismatched or Metamorphic (MM) *Richard King*

EQE and PL of Subcells Matched to 1%-In and 8%-In GalnAs

3/15/09 H. Atwater Caltech

Richard King

High Efficiency GalnP/GalnAs/Ge Triple Junction

• AM1.5 Direct, Low-AOD standard spectrum

0.269 cm²
 aperture area

39.0% record
efficiency,
236 suns, 25°C

3/15/09 H. Atwater Caltech

Richard King

Metamorphic InGaAs Buffer Layers

Step Graded Buffer

Linearly Graded Buffer

P. Kidd et al. Journal of Crystal Growth (1996)

Metamorphic 3J Solar Cells

M.W. Wanlass et al, Proceedings of the 4th WCPEC (2006)

Record Efficiency 3J Solar Cells

	Lattice Matched	Lattice Mismatched
V _{OC}	3.054 V	2.911 V
J _{SC}	0.1492 A/W	0.1596 A/W
FF	0.881	0.875
Concentration	454 suns	326 suns
Efficiency	41.1%	40.8%
	Fraunhofer	NREL

40.1%	40.7%
Spectrolab	Spectrolab

R.R. King et al. APL 90 183516 (2006)

Subcell Integration by Bonding

High-performance solar cells:

- Multi-junction, current-matched tandem monolithic solar cell
- Optimal bandgap sequence achievable

Wafer bonding:

- Non-lattice-matched materials integration
- Misfit defect isolation at only bonded interface

4 Junction Solar Cell Device via Bonding/Layer Transfer

Series-connected GaInP/GaAs/ InGaAsP/InGaAs	Band Gap (eV)	GaInP	1.90
		GaAs	1.42
		InGaAsP	1.02
		InGaAs	0.60

Detailed Balance Efficiency = 54.9%

J.M. Zahler Ph.D. Thesis, California Institute of Technology (2005)

Wafer Bonding/Layer Transfer Process

- 1. Ion implantation:
 - Defects / Internal
 Surfaces
 - -Pressure
- 2. Bond formation:
 - Smooth, particlefree surfaces
 - -Surface activation
- 3. Thermal processing:
 - Bond strengthening
 - -Exfoliation
- 4. Result:
 - Thin, uniform transferred film

InGaP/GaAs/Ge/SiO₂/Si Two Junction Cells Fabricated by Wafer Bonding/Layer Transfer

After Ge wet etch & CMP

After InGaP/GaAs Growth and Cell Processing

AM 1.5D Light I-V

Cell Data

3/15/09 H. Atwater Caltech

InGaAs/InP/Si Low Bandgap Cell with Performance Equivalent to State-of-the-Art InGaAs/InP

	<u>ρ.2 mm</u>

Cell Description	JSC(mA/cm²) VOC(mV)		Fill Factor	
Bulk InP Reference Cell Bulk InP + RIE + wet etch	-59.7 -61.7	329 342	0.686 0.685	
(InPOI + RIE + wet etch)	-62.7	338	0.675	

Process <u>Eliminates</u> InP Substrate Cost
 •Template Fabrication Cost ~ Epi Cost

Zn₃**P**₂ - An Earth Abundant Semiconductor

•Energy Gaps – Direct and Indirect nearly aligned @ ~1.3 eV

cm 1 2 3 4

•Zinc Phosphide not commercially available – have to grow crystals

Zn_3P_2 wafer in vacuo 355nm excitation, 10 kHz Zn₃P₂ Energy Bands and 10⁰ • fl. signal 10° **Heterojunction Cell** Zn₃P₂:ZnS:ZnO Band Alignment -E 10⁻² Lifetime at direct gap: diffusion length ~10 um. AM 1.5 G Illumination 10⁻³ Zn_3P_2 ZnS ZnO:Al 10 20 30 40 0 time / ns 17Feb2009 $\Delta E_c = 0.2 \text{ eV}$ 1.7 -Indirect Gap $V_{OC} \sim 0.8 \ V$ 1.65 - Direct Gap 1.6 -Indirect Gap + 3kT Energy (eV) 1.55 $\Delta E_v = 2.3 \text{ eV}$ 1.5 1.45 1.4 1.35 1.3 200 0 100 300 400 Temperature (K)

solar cell based on arrays of Si wires features:

- Orthogonalize light absorption and photocarrier collection
- Retain efficiencies competitive with planar, crystalline Si solar cells
- Compatible with low minority carrier diffusion length
- Si wire arrays formed by SiCl₄ chemical vapor deposition
- Can be formed into flexible that are peeled off template Si

Device Modeling

1-D carrier transport modeling indicates that high efficiencies can be maintained for low diffusion length materials

Modeling indicates $\eta > 15\%$, $V_{oc} > 500 \text{ mV}$ achievable with $L_n = 1 \ \mu m$ in Si, provided junction recombination is not limiting

B. M. Kayes et al., J. Appl. Phys. 97, 114302 (2005)

- Reactive Ion Etching used to define wires, to deconvolute
 - Device geometry effects

from

- material quality issues, and
- device fabrication difficulties

With 5 μ m diameter, 50 μ m long wires we see:

device size ~0.1 cm², $V_{oc} = 505 mV$, $J_{sc} \approx 20 mA/cm^2$, FF = 58 %, $\eta \approx 5.7$ %

(diffused B emitter, 5 Ω cm n-Si(100) base) High V_{oc} achievable in Si wire array cells

B. M. Kayes et al., Proc. of 33rd IEEE PVSC (2008)

0.00

-0.02

0.0

-0.2

0.2

0.6

Prototype Si Wire Array Devices

Vapor-Liquid-Solid (VLS) Growth

- Single crystal wires
- Growth direction controlled by substrate orientation
- High growth rates (up to $\sim \mu m/s)$
- Inexpensive gas phase precursors
- Atmospheric pressure growth possible
- Wide range of diameters possible

R. S. Wagner and W. C. Ellis, App. Phys. Lett. 4, 89 (1964)

Si Wire Array Cell Milestones

Growth of vertically-aligned, patterned Si wire arrays over large (>1 cm²) areas, using Au, Cu, and Ni catalyst metals.

Kayes, B. M.; Filler, M. A.; Putnam, M. C.; Kelzenberg, M. D.; Lewis, N. S.; Atwater, H. A. *Applied Physics Letters* **2007**, 91, (10), 103110-3.

Demonstration of Si wire array photoelectrochemical cell

Maiolo, J. R. I.; Kayes, B. M.; Filler, M. A.; Putnam, M. C.; Kelzenberg, M. D.; Atwater, H. A.; Lewis, N. S. *Journal of the American Chemical Society* 2007, 129, (41), 12346-12347.
Goodey, A. P.; et. al. *J. Am. Chem. Soc.* 2007, 129, 12344-12345.

Si Wire Array Cell Milestones

Recycling of patterned growth substrate and repeated re-growth of wire arrays

Spurgeon, J. M.; Plass, K. E.; Kayes, B. M.; Brunschwig, B. S.; Atwater, H. A.; Lewis, N. S. *Applied Physics Letters* **2008**, 93, (3), 032112-3.

Ni-catalyzed NW

 $L_{p,eff} \sim 10 \ \mu m$

"Fundamentals of Solar Cells", pp. 83

LIST CHINOR

Absorption concentration: Si wires act as waveguide array

Percent solar absorption vs. area fraction

Baffle

Sample

Sample beam position

Referen

peam position

Two Plasmonic PV concepts Backside SPP

Nanoparticle Scatterer/ Dielectric Waveguide

H. R. Stuart and D. G. Hall, APL 69, 2327, 1996 S. Pillai et al, APL 88, 161102, 2006

Particle scattering and absorption effects on spectral response

K.Nakayama, K.Tanabe, and HAA Appl. Phys. Lett. 93, 121904 (2008)

Surface Plasmon Incoupling at Sub- λ (100 nm)Grooves

Angular Dependence of Absorption Enhancement

V.E. Ferry, et.al. Nano Letters, 8, 4391-4397 (2008)

SPP-Induced Quantum Dot Excitonic Absorption

Detailed balance between absorption and emission cones

Results:

light in medium will be randomized in direction

In medium, $2n^2(x)$ times greater intensity than incident light (for Si, ~50x)

Summary

- •Photovoltaics Resource is TW-capable
- •Close to Limiting PV Efficiency for Single Junction Cells
- •Silicon PV being overtaken by thin films as leading technology
- •Multijunction PV a viable path to >50%
- •Wire Array PV scaleable large area technology

For Terawatt PV:

- •Reduce Material Thickness plasmonics
- •Earth-Abundant Materials!

Acknowledgments

Richard King - Spectrolab Christiana Honsberg – U. Delaware Dave Carlson – BP Solar Dick Swanson – Sunpower Jurgen Werner – U. Stuttgart Martha Symko-Davies - NREL Martin Green - UNSW Nate Lewis - Caltech

Provided ideas, slides, inspiration...

Caltech Students/Postdocs:

Brendan Kayes James Zahler Melissa Archer Katsu Tanabe Mike Kelzenberg Vivian Ferry Domenico Pacifici

3/15/09 H. Atwater Caltech