

Neutron and synchrotron radiaiton studies for designer materials, sustainable energy and healthy lives

J. Murray Gibson

Director Advanced Photon Source, Associate Laboratory Director for Photon Sciences Argonne National Laboratory

Presented to American Physical Society Denver Meeting May 2nd 2009

A U.S. Department of Energy laboratory managed by The University of Chicago

Three major useful types of radiation for materials study

- Electrons, neutron and x-rays are complementary
 - All are forms of diffracting radiation with λ < 0.1nm (interatomic separations in materials)
- All can be produced by accelerators only neutrons and x-rays are large-scale

Spallation Neutron Source
Oak Ridge National Laboratory

Key uses of x-rays (or neutrons or electrons)

Imaging

110 years

Spectroscopy

Diffraction (Scattering)

Preventing mass As poisoning, Polizzotto et al., Chem. Geol. **228**, 97 (2006)

Evolution seen in proteins Ortlund et. al. SER-CAT

All three are greatly improved by "brilliant" sources, such as thirdgeneration x-ray sources and spallation neutron sources

How are x-rays produced?

 Charged particles (electrons) are accelerated or deccelerated

Synchrotrons use very fast electron beams, and "undulators":
Tunable and many, many orders of magnitude more brilliant

Laboratory x-ray tubenot efficient but cheap

Brilliance available from x-ray sources today

History of (8-keV) X-Ray Sources

Brilliance – flux in photons/sec/cm²/mrad²/0.1%bandwidth

What does a third-generation x-ray source look like?

QuickTime™ and a Cinepak decompressor are needed to see this picture.

3500 users per year - massively parallel

How are neutrons produced by accelerators?

How do spallation sources compare with reactors?

What the particle sees....

Advantages/Disadvantages

Thermal Neutrons

$\lambda \sim d_{hkl}$ penetrates strong contrast possible (e.g. H/D)o kinematic restrictions E~elementary excitations strong magnetic scattering

Synchrotron X-rays

 $\lambda \sim d_{hkl}$ high brilliance no AE restriction

Fast Electrons

 $\lambda << d_{hkl}$ high brilliance, nanoprobes no kinematic restrictions no ΛE or ΛQ restriction charge sensitive

low brilliance some elements absorb strongly restrictions on Q for large ΔE excitations < 100meV

strong absorption at low E little contrast e.g. H-C weak scattering from light elements radiation damage

thin samples (or surfaces) dynamical scattering little contrast e.g. hydrocarbons weak scattering from light elements radiation damage

The facts of life

- Penetration increases
- As sensitivity decreases
- And spatial resolution decreases
- But so does source brilliance

What are the properties of neutrons and x-rays for study of materials?

Neutrons penetrate furthest through materials

Hard x-rays do well but have higher spatial and temporal resolution

Electrons have the highest spatial resolution, least penetration

X-ray CAT scanning at very high spatial resolution

Space shuttle foam (real time under deformation)

Can do this with a special lab source, but very slow - synchrotrons necessary for dynamics

Comparative uses of neutrons and x-rays

- Magnetism
 - Very important in information technology
 - Both neutrons and x-rays are powerful and complementary
 - Neutron signal stronger, but orbital only and not element specific
- Spectroscopy
 - Neutrons excellent for atomic dynamics
 - X-rays for electronic (and atomic) dynamics and structure

APS research addresses key challenges in energy...

Better burning

Natural solar cells

Storing hydrogen

Better batteries

and climate change...

how sea animals capture carbon

understanding free radicals in the atmosphere

human health...

taming a killer

does your tooth hurt?

food and water...

understanding plant viruses

jets and aerosols

better infrastructure...

oxide scales could save \$1B for US hydrogen industry

understanding metal fatigue could save lives and money

ancient history...

and some very basic science that will enable new technology...

making waves for efficient lighting

solid oxygen holds surprise at HP

and economic competitiveness

the road to "graphene" electronics

Cog Intensity (a. u.)

Log Intensity (a. u.)

Log Intensity (a. u.)

Log Intensity (a. u.)

(820)

A A 1 0.035

Self-assembly of bolymers

Self-assembly of bolymers

better magnetic materials

We have developed a medium term APS Renewal plan:

Mastering hierarchical structures through x-ray imaging

Images from proteins to living organisms will help connect the dots in understanding how genetics controls health and disease (image courtesy W.K. Lee)

3-D distribution of grains in a 1 mm cube of AI (courtesy R. Suter)

Real materials in real conditions in real time

Schematic of an H2 fuel cell

The cover of this BESAC report shows a diamond anvil cell. APS has been the most prolific source

Scientific themes for renewal (aim for CD0 this summers) rescience.

Longer term we are also evaluating future hard x-ray sources

Offer far higher brilliance, coherence and shorter pulses Complementary to storage ring sources

An X-Ray FEL Oscillator (XFELO) looks very promising

Concept developed by Kwang-Je Kim and Yuri Shvyd'ko

Active R&D program addressing feasibility is going on with very promising

results

Neutron Applications to Materials

courtesy lan Anderson, SNS

Neutrons are good for seeing hydrogen

A good problem for neutrons

The aircraft of tomorrow: welding instead of rivets

Looking inside fuel cells

Water build up in the channels limits operation

Crucial oxygen positions revealed by neutrons

High temperature superconductors for the technology of tomorrow.

Neutrons and Structural Biology

Neutrons are excellent probes for hydrogen

Function:

enzyme mechanism; drug binding, proton shuttling & transfer

Structure: H/D labeled components in protein complexes and assemblies

Dynamics: Mapping the molecular motions of life

Understanding structure formation in membranes...

...and the dynamics

Local

Diffusion

Rotation

Chain defect motion

Flip flop modes

Vibrations

Collective

Membrane undulations

Dynamics too! Adsorbed Films on Nanoparticles

Neutrons are powerful probes of the structure and dynamics of adsorbed molecular films on nanoparticle surfaces and interfaces

Deactivation of an Industrial Pd catalyst

Studying the Earth

FeO, FeS, H

In situ melting temperatures? Phase transitions?

Pressure cell of the type to be employed on SNAP (Spallation Neutrons and Pressure) beamline

Hard Disk Technology

 $E = K_UV > 55 k_BT$ (for 10 y stability)

35 Gb/in²

>100 Gb/in²

Conclusions

- Accelerator-based sources of neutrons and x-rays have many uses
- Major impacts on society
 - Energy, environment, health, economy...
- These sources benefit from world-wide accelerator technology development, including nuclear and high-energy physics
- The techniques are complementary
 - Neutrons suited to larger samples
 - Good for very light elements
 - X-rays have higher spatial and temporal resolution
- Demand for more and better capabilities strong worldwide
- Dramatic improvements in x-ray production with next generation and improved sources offer major impacts

