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Why Make Carbon Nanotubes with the 
Jefferson Lab FEL?

Laser Ablation/Oven technique makes the “best” material, but in 
tabletop form is limited to small quantities (<= 200 mg/hour 
with a typical pulsed Nd:YAG laser apparatus)…

Jlab FEL is unique, it has:
⇒ High average power  (up to 10 kW)
⇒ Tunable wavelength
⇒ Underlying ultrafast pulse structure (sub-picosecond 

pulses at 9 MHz for the current work)

…can this give a high volume stream of nanoparticulate catalyst 
and highly excited carbon stock for nanotube formation?
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Desirable Nanotube Properties for Multi-functional 
Fiber-Reinforced Composites, (etc.)

Single wall.
Long. 
High Quality (clean, straight, defect-free walls).
Pure/Purifiable.
Dispersable.
Specific Chirality (conduction and sensing).
Specific Diameter (bonding and intermolecular 
interactions)



Low “Quality” Nanotubes
(bulk Chinese product)

Image Credits: Dr. Roy Crooks (Swales/NASA LaRC), 
Contributed via Cheol Park (NIA/NASA LaRC)



High Res SEM, 2005 FEL Raw Material

Image Courtesy: Ron Quinlan, College of William and Mary



High Res SEM, 2005 FEL Raw Material

Image Courtesy: Ron Quinlan, College of William and Mary



High Resolution TEM (2001) FEL Material
Shows Single Walls of Individual Tubes



Original Front-Pumped Chamber (2000-2001)

Vacuum chamber (1000 C, 500 torr)
1” dia. Graphite/catalyst target

Nanotube
Formation Vortex

Input FEL beam

Plasma plume

Argon drift flow



Schematic of First Side-Pumped Synthesis 
Chamber (2001, shutdown)

Chamber (1000 C, 760 torr)

Argon heater

Graphite/catalyst target
Spindle

Nanotube
SprayInput FEL beam

Plasma plume

Sonic nozzle



Schematic RF-Induction Heated Side-
Pumped Synthesis Chamber (2005-present)
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5.

1. Graphite core
2. Insulation
3. Purge vessel
4. Purge gas
5. 3.5 kW RF coil
6. Insulation
7. Spindle
8. Target w/catalyst
9. Orifice plate
10. Porous plug 

heater
11. Pyrometer port
12. Input FEL beam
13. Nanotube spray

3.

6.

7.8.

9.
10.

11.

13.

4.

12.



Chamber Core with Orifice Plate



7.5 kW Induction Heater with 
Graphite Test Block



Apparatus, Overhead View

FEL Beam Path



Chamber, Hot Zone



Target Loading



Chamber, Upstream End



Chamber, Upstream End



8/05, Rig installed in Lab 1



8/05, Rig installed in Lab 1



8/05, Opening Production Collector



8/05, Collector with 1 gram raw SWNT



8/05, Laden Collector



8/05, Cleaning Collector



8/05, Couple of grams of raw SWNT



8/05, Raw SWNTs in the jar, 
One Hour Exposure, Yield ~10%



4/05/06, 7.5 grams Raw Material Collected
1.25 Hour Exposure, Est. Yield 50-80%



4/05/06, Used Target, 
75 Minutes Elapsed Time

Fresh Target

Expended Target



SEM of Current High Yield Raw Material on 
Holey Carbon Substrate



…A Brief Digression on the 
Application of Raman Spectroscopy to 
the Analysis of Single Walled Carbon 

Nanotubes…



High Res SEM, June 2005 Raw Material

Image Courtesy: Ron Quinlan, College of William and Mary



Laser Purification of August 2005 SWNT, 785 nm

10% power, dirty spot, 8.26.05.630_2
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Laser Purification of August 2005 SWNT, 785 nm

10% power, dirty spot, 8.26.05.630_2
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G Band to D band ratio is a 
measure of sample purity…

this one’s pretty low, ~3:1, want
to see more like 100:1

G

D

D Band is measure
of amorphous carbon

content



Laser Purification of August 2005 SWNT, 785 nm

10% power, dirty spot, 8.26.05.630_2

-0

 50

 100

 150

 200

 250

 300

 350

 400

In
t

50 X after 5sec 100%

-0

 50

 100

 150

 200

 250

 300

 350

 400

In
t

 500    1000   1500   2000   2500   3000  
Raman shift (cm-1)

G

High Energy Band for SWNT’s has
two peaks (not multiwall).  G1 is

Around 1590 cm-1 (less for MWNT)



Laser Purification of August 2005 SWNT, 785 nm

10% power, dirty spot, 8.26.05.630_2

-0

 50

 100

 150

 200

 250

 300

 350

 400

In
t

50 X after 5sec 100%

-0

 50

 100

 150

 200

 250

 300

 350

 400

In
t

 500    1000   1500   2000   2500   3000  
Raman shift (cm-1)

Position of RBM (Radial
Breathing Mode) 

indicates
SWNT diameter



Laser Purification of August 2005 SWNT, 785 nm

10% power, dirty spot, 8.26.05.630_2
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Eight Position Sampling Chimneys Used for 
Fast Optimization Runs



Eight Position Sampling Chimneys Used for 
Fast Optimization Runs



G band Rises with Increasing Spin Rate 
at High Metal Catalyst Fraction
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G band Drops with Increasing Spin Rate 
at Low Metal Catalyst Fraction
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Target Grain, Dylon vs. EDM Graphite
Optical Microscopy of Ablated Surface

Beam Track ~100 µm

1 mm 1 mm



SEM/EDS Image of Dylon/Phenolic Resin Target
(carbon dark, metal catalyst is light)

Image Courtesy Jianjun Wang, College of William and Mary



SEM/EDS New, Fine-Grained Target
(carbon dark, metal catalyst is light)

Image Courtesy Jianjun Wang, College of William and Mary



Raman Spectra, March 1-2, 2006
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March 2006, Raman Spectra, Chimneys 1,6,7
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Used Target, March 06, Showing Thermal Damage



Comparison of FEL Synthesis with 
Commercial Methods

raw_HIPCO_3.11.05
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Comparison of FEL Synthesis with other 
Commercial Methods (4/5/06)
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Latest Comparison of FEL Synthesis 
with Unpurified HipCO (4/12/06)

raw_HIPCO_3.11.05
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Latest Comparison of FEL Synthesis 
with Unpurified HipCO (4/12/06)

raw_HIPCO_3.11.05
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Variability of Radial Breathing Modes
Comparison of FEL with other Methods
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FEL CNT RBM (tube diameter) Variations with 
Wavelength and Focusing Condition
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Engineering:
Demonstrated high yield, HipCo-level-quality SWNT production at a production 
rate of 2-10 g/hour (10 to 50 X HipCo or Nd:YAG synthesis rates) at ~750 W
average power, at 1.6 micron.

Developed specialized fine-grain FEL CNT target 
made in-house for < $10/lb.

Developed RF-heated laser oven apparatus (flow geometry, heat 
transfer/temperature distributions, target holder, production and sampling 
collectors, scanning and other remote controls, and visualization).

Physics:
Found that the highest average yield is always at “incipient extinction”
(the largest laser spot size before the plasma goes out.)

Found that the highest yield flakes of raw material always contain the smallest 
diameter tubes (the “smoking gun” pointing to ultrafast ablation effects).

Showed that RBM (tube diameter) varies with laser condition at a given 
wavelength as well as with wavelength.

Conclusions



Production at 750 W quasi cw is now routine, and will continue as 
required, but main focus will be on scale-up with:

Shorter Wavelengths and Higher Power (and more temporal stability)!

----------------

Projections?  

At least 20-40 g/hour of highest grade material, ~5 times more for
lesser grades (straight linear extrapolation).  

“Designer” tubes with selectable diameter.  (length?, chirality?)

More access to higher quality tubes with more choice regarding important 
properties => real progress in applications.

Future
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