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Absorption  and Scattering Spectroscopy
Scattering and absorption spectroscopies utilize the interaction

of an  applied electromagnetic  field with the phonon  (vibration)

field of the material to provide useful  structural information . 

Raman scattering

I1hνlight

Absorption
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hνvibr

hν1

Ground state Exited state

hν2

hνvibr.

hνvibr. = hν1-hν2

hν1, hν2 >> hνvibr.

hνlight I2

hνvibr.=hνlight

T.Glo us, UVAb



Frequency, cm-1
0 1000 2000 3000

A
bs

or
pt

io
n 

co
ef

fic
ie

nt
, c

m
-1

0

500

1000

1500

2000

I  Visible & near IRII -far IRIII -THz

Frequency, THz
3 10 30 60 90

III I I

DNA Absorption Spectrum

Absorption spectrum of DNA (our results).

Regions I & II (Studied well
by IR & Raman)- resonances due
to short-range, high energy
interactions

in THz Region III – more
species specific spectral features 
of  bio molecules are found

FTIR spectroscopy produces  high quality spectra in the region II,
and can separate overlapping subcomponents in the spectra
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INTERNAL MOLECULAR VIBRATIONSINTERNAL MOLECULAR VIBRATIONS
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In the region III (0.1-10 THz or 2 - 300 cm-1), absorption spectra reflect
low-frequency molecular internal motions or vibrations involving  the 
weakest hydrogen bonds and/or non-bonded interactions between different 
functional groups within molecules or even between molecules.
The resonant frequencies of such motions – phonon modes- are strongly 
dependent on molecular structure

Bonds
Vibrations of Frequencies

>21 THz (700 cm-1 )

6-27 THz (200-900 cm-1 )Bond angles

Torsion angles
< 9 THz  (<300 cm-1 )
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WEAK HYDROGEN BONDS

Weakest hydrogen bonds, 
shown by dots:
-C-H ......O-
-C-H ......N-

-C ...... H-N-
-C ...... H-O-
-N-H......O=C-

- weak and have only ~ 5% of the strength of covalent bonds

- multiple hydrogen bonds stabilize the structure of bio-polymers

- hold the two strands of the DNA double helix together, or hold 
polypeptides together in different secondary structure conformations. 
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Why THz?

THz spectroscopy reveals structural information quite different from  all 
other methods since it can directly detect weakest hydrogen bonds and 
non-bonded interactions within biopolymers.

Liquid water absorption
Less water absorption (at list 2 orders) 

compare to IR and far-IR. Less
overlap with water or other analytes
absorption bands.  Liquid samples can   
be characterized.
Absorption bands are more narrow 
in the THz range  than in the IR and 
overlapping of neighboring bands is 
less.

The availability of multiple resonances for the sensitive measurement of 
bio-molecule structure.

Spectra are more species specific.
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“THE WORLD  OF THE DEAD  OR  OF  FUTURE  PUNISHMENT“
M .N. Afsar &K.J.Button, “Infrared and Millimeter Waves,” V.12, Acad. Press, 1984

“Terahertz gap”
The spectral  range between the upper end of the microwave and the

lower end of the extreme  far IR
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Low energy of sources.Low energy of sources.
Low absorptionLow absorption of of biological materialbiological material requires samples with requires samples with 
large  area  and  thickness which is difficult to make beclarge  area  and  thickness which is difficult to make because ause 
samples are  too fragile.samples are  too fragile.
PoorPoor reproducibilityreproducibility of experimental results due to of experimental results due to multiple  multiple  
reflectionreflection in  measurement systems,  responsible for in  measurement systems,  responsible for artificialartificial
featuresfeatures; difficulties in sample ; difficulties in sample preparationpreparation, , ininstabilitystability of material.of material.
TheThe absenceabsence of goodof good commercially availablecommercially available laboratory laboratory 
instrumentsinstruments
Potentially promisingPotentially promising laboratory techniqueslaboratory techniques as as time resolved time resolved 
spectroscopy and spectroscopy and photomixingphotomixing technology technology are only recently are only recently 
emergedemerged
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MOTIVATION and GOALS

There is a general need for faster and less expensive techniques

that can provide useful structural information on bio-materials.

Our goal  is to demonstrate that THz spectroscopy can be a        

fruitful technique even with all mentioned difficulties and by using 

commercially available instruments.
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Questions to answer:

Is there something in the very far IR spectra? ((initial prediction of initial prediction of 
vibrationalvibrational modes in polymer DNA in the 1modes in polymer DNA in the 1--100 cm100 cm--1 frequency range [ 1 frequency range [ E.W.ProhofskyE.W.Prohofsky, K.C. Lu, , K.C. Lu, 
L.L.Van Zandt and B. F. Putnam, Phys L.L.Van Zandt and B. F. Putnam, Phys LettLett., 70 a, 492 1979; K.V. ., 70 a, 492 1979; K.V. DeviDevi Prasad and Prasad and 
E.W.ProhofskyE.W.Prohofsky, Biopolymers, 23,1795, 1984]. , Biopolymers, 23,1795, 1984]. 

What are the reasons why researchers for 20 years failed to 
achieve reproducible results? Experimental results are not reproducible and are 

contradictive.  It was not clear what to expect. Can we improve the results?

Can we use the observed features for DNA characterization, 
identification and discrimination  between species?

The key to answer  all these questions: we need to know of 
what  we  are looking for.
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THEORETICAL  PREDICTION  OF  THz ABSORPTION  SPECTRA

Maria Bykhovskaia, B. Gelmont

IR active  modes are  calculated directly  from  the  base  pair  
sequence  and  topology  of  a  molecule.
InitialInitial approximation was generated and optimized by  the  approximation was generated and optimized by  the  program packages program packages 
JUMNA and LIGAND JUMNA and LIGAND (group of  Prof. (group of  Prof. LaveryLavery,, Inst.BiologieInst.Biologie Phys.Chim.ParisPhys.Chim.Paris).).

Energy minimum Normal modes Oscillator strengths Spectra
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QUESTIONS:

What do we expect to find in the submillimeter wave range?
What is the predictive power of the method?
How sensitive are far IR absorption spectra to DNA structure?

Normal mode analysis is applicable to molecules with less than 30 base-pairs
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ENERGY MINIMIZATION AND NORMAL MODE ANALYSIS
(in internal coordinates of a molecule)

Maria Bykhovskaia, B. Gelmont

Molecular potential energy approximated as a function of  dynamic 
variables(q): torsion and bond angles.
Conformational energy
including long distance interactions :

E total = E Van der Waals + EElectrostatic + E HBonds + E Torsion + E Bond angles

Van der Waals and electrostatic interactions;  the energy of hydrogen bonds deformations; 
torsion rotation potentials;  stretching deformations of bond angles and of bond length

Two BB--helicalhelical conformation conformation DNA DNA fragments (TA)12(TA)12 with  different base pair 
sequences:

andand thethe AA--helixhelix of  double stranded of  double stranded RNA  Poly[C]RNA  Poly[C]..Poly[G]Poly[G]

AAAAAAAAAAAA ATATATATATAT
TTTTTTTTTTTT TATATATATATA
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LOW FREQUENCY NORMAL MODES
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360 normal modes were found for each sequence with 360 normal modes were found for each sequence with the density higher than  1 the density higher than  1 
mode per cmmode per cm--11.. There is almost There is almost no overlapno overlap of of weak bond modesweak bond modes with vibrations with vibrations 
of of covalent bondscovalent bonds which have frequencies above 750 cmwhich have frequencies above 750 cm--11. . 

Maria Bykhovskaia, B. Gelmont
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Absorption Spectra vs. Base Pair Sequence

α(ω) ∼ γω2 Σ (pk)2 / ( (ωk
2 - ω2 )2 + γ2 ω2 ),    the oscillator decay γk=2 cm-1 ,

the dipole moment
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Poly(dAdT)Poly(dTdA)Poly(dA)Poly(dT)
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A double stranded 12 base pair RNA homopolymer fragment
Poly[C]-Poly[G] (Maria Bykhovskaia, B. Gelmont)

Absorption spectra for  two values of oscillator decay γ =0.5 cm -1 and  γ =1 
cm –1,      
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for electric field E perpendicular to the long axes of a molecule ( αx+y) and  
parallel to the long axes  (α z).

For this fragment, the maximum absorption corresponds to E perpendicular to 
the long  molecular axis z. 
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Short artificial DNA (Maria Bykhovskaia, B. Gelmont)

B-form: 5'-d(CCGGCGCCGG)-3‘, 10 base pairs per turn,
right-handed, has major and minor grooves. 
A-form: 5'-d(CCCGGCCGGG)-3‘is adopted by dehydrated
DNA; it has 11 base pairs per turn, and the base pairs are 
tilted with respect to the helix axis. A-form is sensitive to 
humidity and can be changed to B-form.
Z-form: 5'-d(GCGCGCGCGC)-3‘- is a left handed DNA
helix in a zig zag pattern  with12 base pairs per turn. It 
adopted  in solution at high salt concentration and when 
reduce salt  content it can be changed from left-handed to 
right-handed.
It has no documented biological relevance. DNA exerts 
a regulatory activity when in Z conformation. 

Frequency, cm-1
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Optical characteristics 
depend on conformation

Dry     In gel    High salt

The two DNA strands are held together by base pairing 
(hydrogen bonding) between complementary bases. 
Cytosine ( C ) is always hydrogen bonded to guanine ( G ). 
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Experimental set up

Bruker IFS-66 spectrometer (Hg- lamp source, He cooled Si-
bolometer @ 1.7 º K). Vacuum systems are not shown.

Attachment for reflection measurements.
Resolution 0.2 cm-1.
Range of interest throughout 10 cm-1 – 25 cm-1.

T.Globus, UVA
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Martin-Pupplett Polarizing Spectrometer
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THz FourierTHz Fourier--Transform (FT) spectrTransform (FT) spectroscopyoscopy

Spectral resolution  at least 0.25 cm-1 to measure features with 0.5 cm-1

band width
High sensitivity (signal to noise) and reproducibility to provide   
standard deviation better than 0.3% to measure small signals

What is important?
Good Instrument performance:

 7 samples of BG (5 mg each)
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Challenging ProblemChallenging Problem

Serious problem at THz - all kinds of multiple reflections
or standing waves in most of  measurement systems because of large 
wavelengths of radiation. 
These effects cause artificial false resonances.
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# 206.83, Gor-Tex, d=3 mm 

Check for false resonances  using 
thick plates from material with low 
absorption is important. Ideally
spectrum is close to cos form. 
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Material for studyMaterial for study

Herring, salmon and calf thymus DNA sodium salts with 6 % sodium salts with 6 % 
Na content,   from Sigma Chemical Co. Na content,   from Sigma Chemical Co. 

Artificial  Artificial  short-chained oligonucleotides of known base-
pair   sequences from  Sigma Chemical Co: 
• Single stranded  RNA - potassium salts with the different nucleotide 

composition:  poly (G), poly (C), poly (A), poly (U),
(Guanine (G), Cytosine (C), Adenine (A), Uracyl (U)). 

• Double helical RNA - sodium salts:  Poly [C] * Poly [G] and 
Poly [A] * Poly [U].

• DNA,   as 5'-d(CpCpGpGpCpGpCpCpGpGp)-3‘ and others with different 
sequencing, in A, B and Z   conformation. 

Spores, plasmids, proteins, cellsSpores, plasmids, proteins, cells
BioBio--materials in solutionsmaterials in solutions

APS, March 2005       20T.Globus, UVA
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Sample preparationSample preparation

Simple techniques has been developed to fabricate large area, thin, 
stable samples

Free-standing films and films on substrates are prepared from 
the water gel. Film thickness 2 µm - 250 µm.

The ratio of water  to dry material in the gel from 5:1 to 30:1. 

Thin polycarbonate membranes, polyethylene or Teflon films  
with ~98% transmission are used as supporting substrates in some 
cases. 

To receive good resolution, samples of at least 1/2" diameter are 
fabricated. 

Samples are aligned to receive preferable orientation of long 
molecule axes in one direction.  Good alignment enhances the 
sensitivity.

T.Globus, UVA
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Reproducibility vs. orientation and interference effects

λextr - the wavelength of transmission extrema
d - the film  thickness
m - the order of extremum.
n- refractive index ~ 1.7 - 2.3

Poly[A], d~160 µm
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Resonance features are resolved on the envelope of the wide interference 
pattern.

Same orientation

These kind of interference  features were initially considered as resonance 
modes in bio materials. 
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Absorption coefficient
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The interference pattern is not obvious   in transmission of thin films
(thickness  between 15 and 70 µm).

Absorption coefficient spectra are derived by interference spectroscopy technique
(IST) for proper  modeling of the multiple  reflection behavior.

T.Globus, UVA
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Material  texture

Image  of the Salmon DNA sample in 
polarizing microscope (free standing).  

Film thickness about 10 µm.

Gel concentration 1:10.

DNA, as a  rod-like polymer, spontaneously forms ordered liquid crystalline 
phases in aqueous  solution with the  long molecular axis preferentially 
aligned in one direction. 

In drying process,  DNA solution undergoes a series of transitions and  film 
samples are characterized by their microscopic textures with  periodic 
variations in refractive index and fringe patterns observed in polarizing 
microscope.

The  film texture depends on the concentration  of molecules in solution and 
on drying conditions. 
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Absorption coefficient  at 
two orientations

For Poly[A]-Poly[U] fragments, absorption is higher and resonance structure 
is much more pronounced with electric field of radiation E perpendicular to 
the long axes of molecules Z.

Poly [A]-Poly[U], d=16 µm
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Documented strong anisotropy of optical characteristics of
biological molecules  at  THz.  
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Sample position with electric field (a) 
perpendicular and (b) parallel to the 
long-axis of the molecule  z.

Change with  sample rotation.Change with  sample rotation.
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Experiment and Modeling

Many of the initial successful measurements of the THz absorption properties of   
biological materials have been performed at the University of Virginia. 

Evidence of multiple  resonances in THz transmission spectra  with  a  high   
degree confidence in recognition  of  bio- molecules has been demonstrated.

Direct comparison of experimental   
spectrum (red) with theoretical 
prediction (blue) for a short chain 
DNA  fragment with known structure.

Reasonably Good correlation
validates both,   experimental and  
theoretical results.
From the width of the vibrational modes:

oscillator decay γ =0.5 cm -1

relaxation time   τ =7 10-11 s
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Poly [C]- Poly [G]
 d=6.5 µm
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Long term reproducibility

Salmon DNA
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Improved technique for solid film sample preparation:
good alignment
reduced amount of material from 15-20 mg to 1- 3 mg for one sample
reproducibility better than 0.5%

Period of 45 days
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Single- and double stranded Salmon-DNA

Wavenumber, cm-1
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Absorption for ss-DNA ~ 20 % higher than for ds-DNA.
Additional peaks in α at 11.2 cm-1,13.4 cm-1 and 14.8 cm-1 for ss-

DNA.
Higher n for ss-DNA.

THz spectra are sensitive to conformation change that can be used 
for monitoring folding-unfolding of DNA
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THz spectra of Biopolymers  in water (gel)

Biological materials in an aqueous  
form (or gel) can be characterized   
as  well  as in solids. 

Signature is strong. Relative change 
in the peak up to 10-30%.
Spectra are not disturbed by  
water absorption at THz (except at  
18.6 cm-1).
High sensitivity of  spectra to      
orientation.

Lysozyme
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Importance:   all living matter is  in  a liquid  form 

Possible applications:
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structural characterization of  proteins  
and DNA  at  THz; monitoring biological processes.

Disturbance at 18.6 cm-1 is due to

absorption  of water vapor in air.

T.Globus, UVA



Structural phase transition

Herring DNA, gel 1:12
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Several vibrational modes
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Temperature of  structural transitions is close to RT and is sensitive to
environmental  conditions,  including humidity.

Very high reproducibility of resonant features up to transmission level 90 %.

Sensitivity limit in aqueous form as well as the possibility to measure
polarization effects require clarification.

T.Globus, UVA



Possible applications of THz spectroscopy

Wide-range of biomedical  applications based on close  
relationship between structure and spectra, including  
monitoring changes in molecular conformation in real time

real-time analysis of protein binding for transport
protein binding with antibodies, 
specificity interactions between proteins and nucleic acids
binding stability studies of drug-protein and vitamin-protein systems
disease diagnostic

Systems for bio-detection and identification

Remote sensing of biochemical agents

T.Globus, UVA
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Bio-Medical Application: Disease  diagnostic

Cancer Cells frozen
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Cancer cellsCancer cells suspended in buffer solutionsuspended in buffer solution (Phosphate(Phosphate--Buffered Buffered 
Saline)  with the ratio of dry material to liquid ~ 1:10 were meSaline)  with the ratio of dry material to liquid ~ 1:10 were measuredasured

Spectra of prostate and bladder cancer cells
THz spectroscopy appears to be a promising  approach toward discriminating 
between different tumor phenotypes.

Can we use tissue for cancer characterization?
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