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Conclusions
For the past 35 years, transistors have been 
developed using “Electrical Engineering Physics”, 
which was codified in the early 60’s

As the industry approaches the “End of Roadmap”, 
Electrical Engineering Physics is no longer sufficient.  
Technology development increasingly requires
– Sophisticated quantum physics
– Non-equilibrium Boltzmann transport
– Material science at the atomic and electron 

orbital level

This has implications for
– Physics education
– Career opportunities for physicists in the 

semiconductor industry
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US Patent # 3,138,743 
Filed Feb. 6, 1959 

Integrated Circuit – 1958 
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34 Years of 
Scaling History

Every generation
– Feature size shrinks by 70%
– Transistor density doubles
– Wafer cost increases by 20%
– Chip cost comes down by 40%

Generations occur regularly
– On average every 2.9 years over 

the past 34 years
– Recently every 2 years
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Electrical Engineering Physics

f(E) = f(E) = 
1

e (E - E  )/kT + 1F
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High Performance Processor
@ 90nm

256 million transistors
37nm gate length
PNO gate: 10 nm EOT
NiSi2/Poly gate
8 levels Cu with low-k 
interlevel dielectric 
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Lithography

Year of Production

Resolution 
(µm)

Lithography will not ultimately limit IC feature size!
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Voltage Reduction Achieved by
• Reduction in tox ≈ 10A in 2004
• Increase in εox using Plasma 

Nitrided Oxide (PNO)
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Gate Insulator
Bad News

Dielectic Constant

B
re

ak
do

w
n 

St
re

ng
th

 (M
V/

cm
)

TiO2 (k=60-95)

0.1

1

10

100

1 10 100 1000

SiO2 (k=3.9)

HfO2 (k=21), ZrO2 (k=29)

Si3N4 (k=7.5), Al2O3 (k=9)

Ta2O5 (k=19-26), La2O3 (k=27), Pr2O3 (k=31)

SrTiO3 (k=50-200)

Hi-k also degrades channel mobility

Good News
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Work Function (eV)
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Electrons in Si

Modern CMOS
Vertical Field E ≈ 1.2 MV/cm
Stark Quantization results in

∆E ≈ 75 meV
∆Vt ≈ 50 mV
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Holes in [110] Uniaxially Compressed Si
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Discrete Channel Dopants 
Introduce IOFF Fluctuations
and IOFF Degradation
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Myth of the MOSFET Switch
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Electrostatics
Critical Scaling Parameters
L W
tox xjun xdep

Multi-Gate FETs show promise of 
extending scaling for several 
generations beyond planar CMOS

tox and xdep are encountering scaling limits.  This results in ...

– Degraded sub-threshold slope
– Increased drain induced 

barrier lowering (DIBL)
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Conclusion
Scaling CMOS to the “End of Roadmap” will require 
sophisticated condensed matter physics.
– Gate stack:  Atomic and electron orbital understanding of 

this complex material system
– Quantum behavior of carriers

• High perpendicular E field
• Stress

– Non-equilibrium Boltzmann transport
– Tunneling: Gate insulator and Drain-to-Substrate
– Simulation

Sophisticated condensed matter physics will also be required 
to invent and develop electronics beyond CMOS
– Single Electron Transistor (SET)
– Carbon Nano-tube (CNT)
– Molecular Electronics
– Spintronics
– Quantum Computing
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