

An Industrial Physics Toolkit Bill "milo" Cummings Staff Engineer, Iridigm Display Corporation

Outline

Physicists in Industry

- Where Do They Come From?
 - How do they get there?
 - What do they do?
- What is Iridigm?
- Technology Development
- Career Management
 - Marketing
 - Skill Mapping
 - Skill Development
- Concluding Remarks

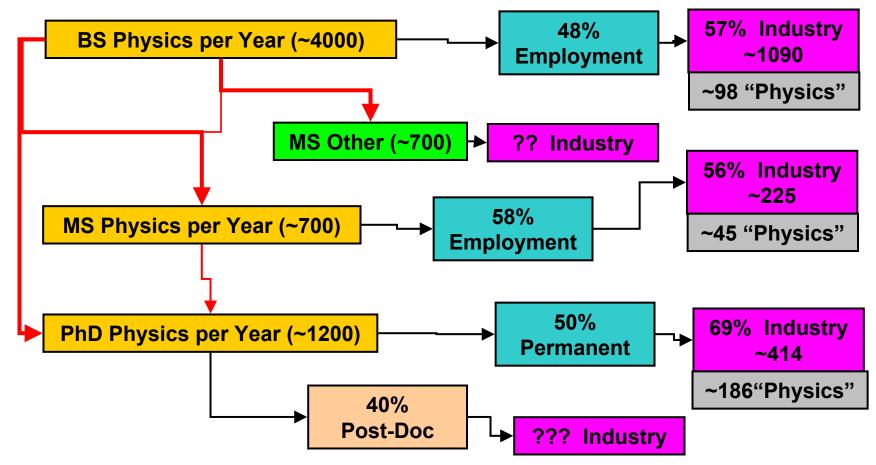
My great thanks go the the staff of:

Statistical Research Center www.aip.org/statistics

For their excellent reports.

I hope I haven't misinterpreted too much of their data.

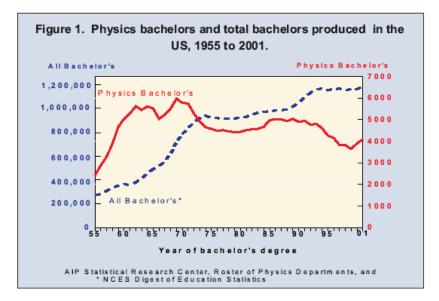
Four Major Areas:

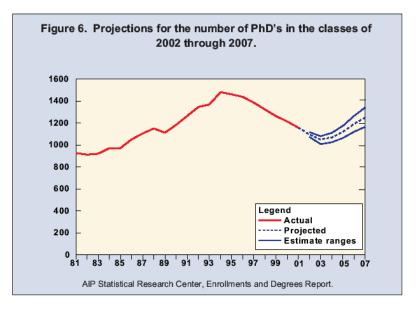

- 1) Work at University, UARI or other Academe
- 2) Work for government or FFR&D Center
- 3) Work for Private Company, Consultant, or Self-Employed
 - 4) Work for a non-profit, medical services

In this presentation, any employment in this category (#3) will be considered "Industry"

Physics Degrees Flow

Data from AIP Statistical Research Center-


Caveat: This is my personal analysis and may not be correct (static assumption); Latest data: classes of 2000 and 2001 combined.



Industrial Physics

Conclusion:

- Almost HALF of all Physics Majors eventually work in "Industry"
 - Between 1200 and 2000 New Hires/Year in Industry with Physics Background
 - Very few in "Physics" positions!
- Long Term Trend (last 20 years) is fairly flat.

Type of Work

Roughly half the Physicists in Industry work in focused	Work Activity	%
	Short-range research Development, design, and engineering Short-range applied research	27 19
SHORT TERM research or	Long-range research Long-range applied research Basic research	16 5
development !	Administrators	13
	Consultants	10
	Other	10
	Table 2. Industrial Ph.D.'s by work	

Table 2. Industrial Ph.D.'s by work activity, 2002.

Iridigm Location

Iridigm[®] Display Corporation

Pac Bell Park

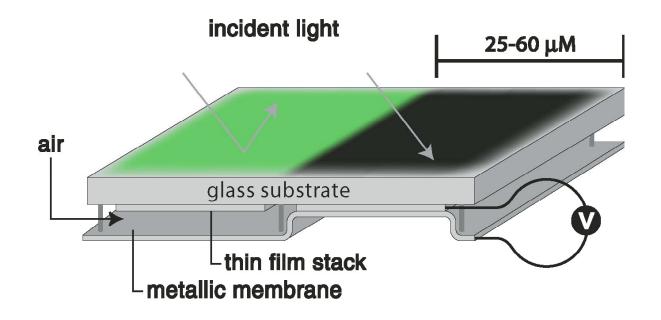
Iridigm

3/29/2004

Iridigm Facilities

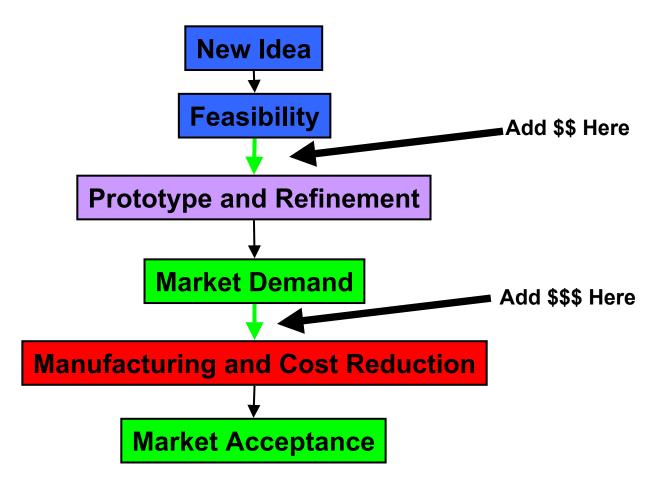
"Raw" industrial location

- Office 5500 sq. ft.
- Fabrication 3000 sq. ft. (1200 sq. ft. cleanroom)
- Systems 1000 sq. ft



iMoD: Concept

Interferometric Modulator (iMoD)


Direct View MEMS based Flat Panel Display Technology

- Color from Simple Fabry-Perot Etalon Structure
- Switching from moveable metallic membrane
- Fast response (10's of microseconds)
- Simple structure of all sputtered films

Technology Development

Iridigm is an example of a FOCUSED new technology business

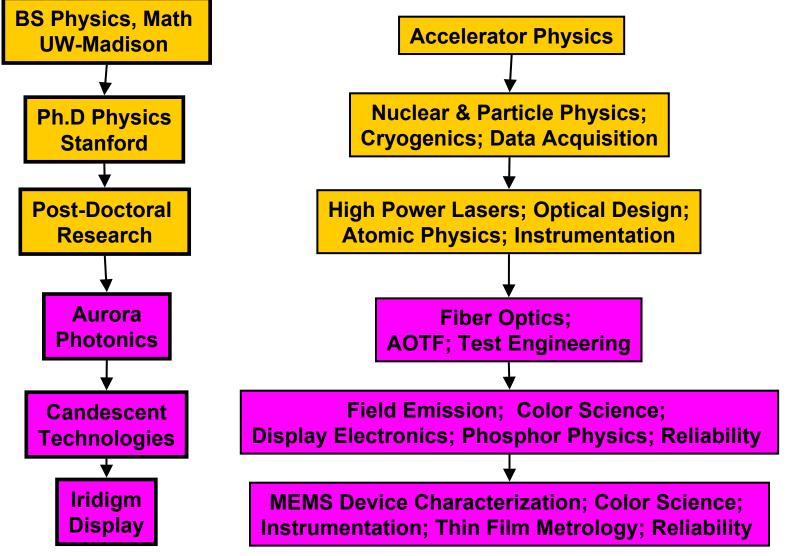
This is the dominant model for R&D in the Private Sector

3/29/2004

IRIDIGM

Four Steps for Industrial Career

- Choose Career Path
- Skill Mapping
- Skill Development
- Skill Transfer


Step 1: Choose Career Path

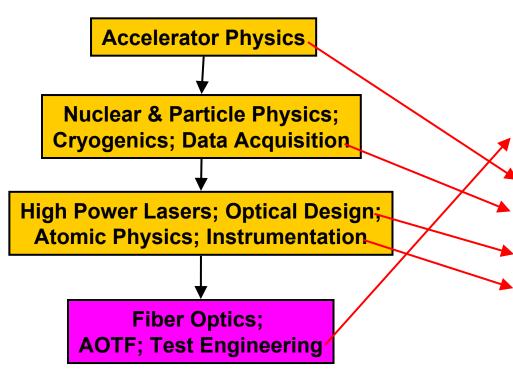
A career in FOCUSED development requires:

- Filling an organizational need
 - Match your skills to job opening
- Developing skills needed for project
 - Grow with demands of organization
- Strong self-marketing skills
 - Build an effect resume
 - Maintain a good network
 - Be prepared to change jobs
- Commitment to continuous change

GM

A Personal History

3/29/2004


Step 2: Access Your Skills

Skill Mapping

- Resume should be "Skill Driven"
 - List Skills First
 - Include Quantitative Experience
 - Work Experience (must reinforce skills)
 - Emphasize Leadership
 - Education After Experience
- Layout is not important
- Adjust resume to job opening
- Target companies without openings
 - If they need your skills

Example: Skill Mapping

My Background:

Display Company Need:

Develop New Automated Equipment for Display Testing

Test Engineering Ultra High Vacuum Software Programming High Magnification Camera Optics Automation

Image Processing

Display Electronics

Skill Development

- Develop "Non-Academic" Skills
 - Working in Interdisciplinary Teams
 - Respect for other backgrounds
 - Many educational levels
 - Effective Time Management
 - Cost Management
 - No Free Labor in Private Sector
 - Purchase Productivity Tools
- Invent Something!
- Update Resume
 - Keep a clear understanding of your skills
 - Work to fill out skill set.

Example: Skill Development

Display Company Begin

Test Engineering

Ultra High Vacuum

Software Programming

High Magnification Camera Optics

Automation

Image Processing

Display Electronics

Atomic Physics

Experiment Spokesman <

Display Company End

Test Engineering

Ultra High Vacuum

Software Programming

High Magnification Camera Optics

Automation

Image Processing

Display Electronics

Color Science

Phosphor Physics

Project Management

Reliability Engineering

Innovation (patents)

Thin Film Metrology

Step 4: Transfer Skills

Transfer Skills

- Move to a new position!
 - Take a different role in current company
 - Move to a new company
- Increase the leverage of your position
 - Management
 - More direct charges
 - Productivity
 - Faster results
 - Intellectual Property
 - More inventions

Example: Skill Transfer

First Display Company

Test Engineering Ultra High Vacuum Software Programming **High Magnification Camera Optics Automation** Image Processing **Display Electronics Color Science Phosphor Physics Program Management Reliability Engineering** Innovation (patents) Thin Film Metrology

3/29/2004

Second Display Company

Test Engineering

-Ultra High Vacuum-

Software Programming

High Magnification Camera Optics

Automation

Image Processing

Display Electronics

Color Science

-Phosphor Physics

Program Management Reliability Engineering Innovation (patents) Thin Film Metrology

MEMS

The Toolkit

Now we can come back to the title of this talk:

[P7.005] An Industrial Physics Toolkit

Once you complete these four steps; you have built a transferable collection of skills which could be called a "Toolkit."

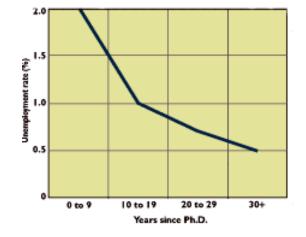
The rest of the story is that you have to continue the process as your career and technology progress.

My Current Toolkit

Most Important

- Project Management
- Reliability
 - MEMS
- Instrumentation
- Data Analysis
- Presentation
- Inventing
- Modeling
- Color Science

Key Secondary List


- Electronics
 - Prototype circuits
- Machining
 - Mechanical Design
- Writing
 - Instruction Manuals
- Software
 - LabView
 - MatLab

Physicists in Industry:

- Work on exciting & interesting projects
- Have transferable and marketable skills
- Have high job satisfaction
- Have a very low unemployment rate

BUT

- Do not arrive by one path
- Need to manage their careers

