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some history...
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Lubrication Theory
• O. Reynolds - ‘On the theory of lubrication and its 

application to Mr. Beauchamp Tower’s experiments, 
including an experimental determination of the viscosity of 
olive oil.’ Phil. Trans. Roy. Soc. London 1886

• Reduction to lower dimensional systems

• Variety of rigid geometries considered: slider bearing, 
journal bearing etc. 
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Applications
• Elastic deformation implies fluid pressures on the order of the elastic 

moduli
• High pressure industrial applications (Dowson & Higginson 59; 

O’Donoghue et al 67). Surface deformations arise alongside 
piezoviscous (high pressure produces a change in the fluid viscosity) 
and thermoviscous (thermal heating changes the fluid viscosity) 
effects. Young’s modulus ~ Fluid pressure ~ GPa

• Biological and polymer applications : soft, complex architecture, fluid-
infiltrated, electrokinetic.....  modulus ~ fluid pressure ~ 1MPa
e.g cartilage biomechanics (Frank & Grodzinsky 87), red blood cells in 
capillaries (Secomb et al 98), 10 MPa for rubber (Martin et al 02), 
polymer brushes (Klein et al. 91).

For a given application, what influence does the choice of material
have on function?
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Model problem
Strategy: specify the kinematics
calculate the forces

Consider a symmetric (2D) 
contact moving parallel to a 
flat surface

l ~

<< 1 since

Dimensionless variables

Navier Stokes equations

density velocity viscosity pressure

Continuity

gap thickness

v

Pressure

so we neglect
inertial forces

Reynolds equation

Reynolds 1886
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The Reynolds Equation

H = gap thickness

H = dimensionless gap thickness

First consider the simplest relationship
between pressure and surface deformation
(Lighthill 68; Johnson 85; 
linear regime studied by Sekimoto and Leibler 93)

Reynolds equation To close the problem we need
to specify how the surface 
deforms due to the fluid pressure
i.e. solve the coupled elastic
and hydrodynamic problems 

we can see reversibility in this equation:
a symmetric contact moving tangentially
to a surface generates no lift

Elasticity can break the symmetry

v

Pressure

E = Young’s modulus

softness
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Lift
Symmetric contact transformed to resemble a slider bearing, 
which is well known to generate lift

Pressure

Deformed Gap

For tangential 
motion 
deformation leads 
to lift

for small deformations



Jan M. Skotheim, L. Mahadevan, 
November 2006

nonlinear solution -
Optimal softness

Pressure

Gap thickness

Lift

softness

Lift

Relative 
motion
between the 
two surfaces

Increased 
deformation leads 
to greater 
asymmetry of the 
pressure 
distribution, but 
also decreased 
pressure since the 
mean gap thickness 
increases
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A sliding rubber sphere begins to 
resemble a slider bearing

Deformable drops and bubbles 
moving in shear flows or in wall-
bounded flows experience lateral 
migration (Karnis & Mason 
1967; Magnaudet et al 2003).

2002
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Soft sliderDifferent geometries and
materials produce similar results

Pressure

Gap thickness

Softness

Lift
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Cylindrical shell
Pressure

X

X

Gap thickness

Lift

Softness
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Journal 
Bearing

Lift

Softness

position

Gap thickness

position

pressure
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Independent of a selection of 
material constitutive laws

Soft materials are often squishy
what effect could this have?

Poroelasticity - schematic

cytoskeleton

 p ~   L2 / k E
L ~ smallest dimension
k ~ permeability

Stiffness is a function of
the time scale

Effect remains the same:
there is an optimal softness
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Cartilage
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For typical operating conditions
for cartilage

suggests a possible role for softness

effects of the detailed geometry, 
loading conditions and 
electrokinetics?

Hl ~ 10-3 m
G ~ 1 MPa
V ~ 0.01 m/s
R ~ 0.01 m
h0 ~ 10-6 m
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Conclusions 

1. There is an optimal softness that produces 
a maximal lift between the surfaces 

2. Experiments ?  Applications ?
1. - Elastomeric/poroelastic bearings 

2. - Cartilage ? 
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