DYNAMICS OF SUSPENDED COLLOIDAL PARTICLES NEAR A WALL

Minami Yoda

G. W. Woodruff School of Mechanical Engineering minami@gatech.edu

- The problem and its motivation
- The (evanescent-wave PTV) technique
 - Near-wall particle distributions and displacements
- Poiseuille flows
- Electrokinetically driven flows
- Summary

A PARTICLE NEAR A WALL

- Wfeat acentplicityionsnics of a particle suspended in a flowing filmidBream a selid cosallent
 - How (st themparsicleave for ity srelated to ity if load to locity?

A PARTICLE NEAR A WALL

Another complication

- Wall, particle surfaces charged
- Fluid conducting with mobile ions: electric double layers (EDL) on particle, wall surfaces

APS/DFD (11/10)

INTERFACIAL TRANSPORT

• Microfluidics: flows with length scales of $O(1-10^2 \ \mu m)$

- Faster diffusion: $\tau_D \propto (\delta_D)^2$
- Large surface areas, small volumes ⇒ surface forces significant

Characterize transport within *O*(1 μm) of the wall

- Track fluorescent particles (*a* = 50 nm–500 nm) illuminated by evanescent waves created at solid-fluid (refractive index) interface by total internal reflection of light
- $I(z) = I_{o} \exp\{-z/z_{p}\}$
- $z_p = f(\lambda, \theta, n_1, n_2) \approx 100 \text{ nm}$ for glass-water interface
- Image $z \le 4z_p$ based on imaging system noise floor

APS/DFD (11/10)

EVANESCENT WAVE PTV

 $a \approx 50$ nm; $\Delta t = 6$ ms (exp. 1 ms)

Brownian effects: $Pe = O(1-10^2)$

- Particle "mismatch"
- Asymmetric diffusion ⇒ overestimation of velocities
 Sadr et al. 07

Channel

- Nonuniform particle distribution
 - EDL interactions, vd Waals effects
 - Measure particle displacements <u>and</u> distributions

Nonuniform illumination

• Range of particle image sizes and intensities

APS/DFD (11/10)

MULTILAYER PTV

- Exploit nonuniform illumination to determine particle distributions <u>and</u> velocity profiles for z < 400 nm</p>
 - Assume particle image intensity $I_p(z)$ has exponential decay with length scale z_p Li & Yoda 08
 - Particle edge distance from wall $h = z_{p} \ln\{I_{p}^{0} / I_{p}\}$

Steady-state particle distribution

• Variation in particle images (σ of I_p^0

- = 9%), average over ensemble of $O(10^5)$ particles
- Near-wall (particle and fluid) velocity profile
 - "Bin" particles into different layers based on *h*, then determine velocities parallel to wall at different *z* using particle tracking

APS/DFD (11/10)

POISEUILLE FLOWS

SLIP

- Is the no-slip boundary condition valid for $z < 1 \ \mu m$?
 - Navier partial-slip BC: b = slip length $u_w = b \frac{\partial u}{\partial z}\Big|_{z=0}$
- Studies report *b* ~ *O*(10–100 nm) for Newtonian liquids flowing over (mainly) nonwetting surfaces
 - Local methods: slip lengths extrapolated from near-wall velocity data

z

u(z)

 $\boldsymbol{u}_{\mathbf{w}}$

- Wide variation in measured slip lengths
- Nonzero *b* attributed to surface wettability, (usually higher) shear rates, dissociated or gaseous layer ("nanobubbles"), change in fluid properties, ...

POISEUILLE FLOW EXPTS.

- Study slip in fully-developed Poiseuille flow through $H = 33 \mu m$ deep channel: $Re_H = 0.03 0.12$
 - Compare with exact solution

$$u(z) = \frac{H^2}{2\mu} \frac{\Delta p}{L} \left[\frac{z}{H} \left(1 - \frac{z}{H} \right) \right]$$

channel $AR = 1$

• Linear velocity profile for

z < 400 nm: shear rate $\dot{\gamma} \approx 500-2300$ s⁻¹

Hydrophobic, hydrophilic channels etched on same wafer

6

- Hydrophilic channels: untreated fused-silica walls with rms surface roughness ~3 nm ⇒ contact angle 28±4°
- Hydrophobic channels coated with ~2 nm thick monolayer of OTS ⇒ contact angle 100±4°

APS/DFD (11/10)

EXPERIMENTAL DETAILS

Fluids

- Monovalent electrolyte solutions: different salt concentrations (2 and 10 mM), pH (~6.4 and ~7.7)
- Particles: $a \approx 50$ nm fluorescent polystyrene; $\phi \approx 20$ ppm
- Fluid with particles degassed for each experiment

Averaged "background" images

(over 1200 images)

PARTICLE DISTRIBUTIONS

Nonuniform distribution

- Few particles at h/a < 1
- Similar results for hydrophobic channel
- "Bin" particles into
 3 (sub)layers (particle center at z = h + a)
 - $1 \le z_{\mathrm{I}} / a \le 3$
 - $3 \le z_{\mathrm{II}} / a \le 5$
 - $5 \le z_{\text{III}} / a \le 7$
- Use number density to

determine avg. z for each layer $\overline{z_{I}} = \int_{I} c(z) z dz / \int_{I} c(z) dz$

APS/DFD (11/10)

VELOCITY RESULTS

Hydrophilic channel (10 mM, pH7.7)

- Average over 5 expts.
- Error bars 95% confidence intervals
- Linear curve-fits to data account for uncertainties in *u* and *z*
 - Shear rates within 4.5% of exact solution for hydrophilic case and 5% for hydrophobic cases (on average)

APS/DFD (11/10)

Copyright Minami Yoda 2010

0

0.2

04

u [mm/s]

0.6

0.8

■ In all but one out of 48 cases, *b* < experimental uncertainty

- In that case, $b = 23\pm22$ nm
- Hydrophobic: *b* "more organized"; increases with shear rate

Li & Yoda 10

APS/DFD (11/10)

ELECTROKINETICALLY DRIVEN FLOWS

A PARTICLE NEAR A WALL

- In addition to Brownian effects, charged particle and wall, conducting fluid with mobile ions
 - For electrokinetically driven flows, external electric field parallel to wall

APS/DFD (11/10)

ELECTROKINETIC EFFECTS

Electroosmosis: counterions in wall EDL driven by E

- Fluid away from walls driven by motion of fluid in EDL ⇒ uniform flow outside EDL
- Electrophoresis: charged particle driven by E
- Particle transported by electroosmotic flow, subject to electrophoresis
 - Measured particle speed

$$u_{\rm P} = u_{\rm EO} - u_{\rm EP}$$

APS/DFD (11/10)

BROWNIAN DIFFUSION

- Do electrophoretic forces alter near-wall (Brownian) diffusion?
- Balance thermal forces with Stokes drag
 - In unbounded fluid, Stokes-Einstein relation $D_{\infty} = \frac{kT}{6\pi\mu a}$
 - Additional hydrodynamic drag due to wall ⇒ anisotropic diffusion parallel, normal to wall
 - For diffusion parallel to wall

$$\frac{D_{\parallel}}{D_{\infty}} = 1 - \frac{9}{16} \left(\frac{a}{z}\right) + \frac{1}{8} \left(\frac{a}{z}\right)^3 - \frac{45}{256} \left(\frac{a}{z}\right)^4 - \frac{1}{16} \left(\frac{a}{z}\right)^5$$

• For diffusion normal to wall, approximation of infinite series

Brenner 61; Bevan & Prieve 00

$$\frac{D_{\perp}}{D_{\infty}} = \frac{6(z/a)^2 - 10(z/a) + 4}{6(z/a)^2 - 3(z/a) - 1}$$

APS/DFD (11/10)

Copyright Minami Yoda 2010

Faxén 22

EXPERIMENTAL DETAILS

Four different fluorescent polystyrene tracers

- $a = 110\pm12$ nm; particle zeta-potential $\zeta_P = -60.6\pm4.3$ mV
- $a = 240\pm22$ nm; $\zeta_{\rm P} = -57.4\pm3.1$ mV
- $a = 371 \pm 34$ nm; $\zeta_{\rm P} = -96.2 \pm 2.9$ mV
- $a = 461 \pm 34$ nm; $\zeta_{\rm P} = -99.9 \pm 3.2$ mV
- Tracers in monovalent electrolyte solution (1 mM, pH~9) ⇒ Debye length scale λ < 7 nm

Electrokinetically driven flows

- *E* = 15 V/cm, 22 V/cm, and 31 V/cm
- Weak Poiseuille flow (E = 0 V/cm) \Rightarrow Measured $u_P < 7$ µm/s

• Image pairs (exp. 0.5 ms) spaced (within pair) by $\Delta t = 1.3$ ms, 1.6 ms, 1.9 ms and 2.2 ms

PARTICLE DISTRIBUTIONS

Number density *c*

• Normalized particle edge distance

$$\frac{h}{a} = \frac{z_{\rm p}}{a} \ln \left\{ \frac{I_{\rm p}^0}{I_{\rm p}} \right\}$$

- Divide O(10⁵) particle images into three (100 nm thick) layers
 - In each layer, determine particle displacements parallel, normal to wall by particle tracking

APS/DFD (11/10)

ESTIMATING DIFFUSION

PDF of displacements parallel, normal to wall

- Curve-fit Gaussian: extract σ^2 for each layer
- Plot $\sigma^2 vs. \Delta t \Rightarrow$ slope = $4D_{\parallel}(\Delta t), 2D_{\perp}(\Delta t)$

DIFFUSION RESULTS

Data at E = 0 V/cm, 15 V/cm agree and agree with theory
 h-positions of D_{||}, D_⊥ determined from particle distributions c(h)

No discernible effect of external electric field on diffusion
 APS/DFD (11/10)
 Copyright Minami Yoda 2010

FLOW VISUALIZATION

a = 110 nm

a = 461 nm

Electrokinetically driven flow: E = 0 V/cm, then 31 V/cm

• *E* drives larger particles farther away from wall

APS/DFD (11/10)

PARTICLE DISTRIBUTIONS

"Electrokinetic lift"

 Dielectrophoretic-like force due to nonuniform electric field in particle-wall gap
 Yariv 06

APS/DFD (11/10)

- Estimate lift force assuming Boltzmann distribution
 - Force on particle $F \propto a^2$, E^2 : no discernible effect of ζ_p
 - $F = O(10^{-14} \text{ N})$ for E = O(10 V/cm)

APS/DFD (11/10)

Evanescent wave-based particle tracking

• Measure particle displacements <u>and</u> steady-state particle distributions within *O*(100 nm) of wall

Poiseuille flow

• Slip lengths of Newtonian liquids over hydrophilic and hydrophobic surfaces zero within experimental uncertainties after accounting for nonuniform tracer distributions

• Electrokinetically driven flow (*E* parallel to wall)

- Moderate electric fields appear to have no effect on diffusion
- Using H-S to predict electrophoretic velocity, even within *O*(*a*) of wall gives good estimate of electroosmotic flow
- Dielectrophoretic-like force \Rightarrow particles farther from wall: force scales as a^2 , E^2

APS/DFD (11/10)

ACKNOWLEDGEMENTS

- Haifeng Li: Poiseuille flow
- Yutaka Kazoe: Electrokinetically driven flow
- Claudia Zettner, Reza Sadr: Evanescent wave-based particle velocimetry
- **S.H. Behrens (GT ChBE): Light scattering measurements**
- J.P. Alarie, J.M. Ramsey (UNC): channels
- A.T. Conlisk (OSU): Electrokinetically driven flows
- P.J. Mucha, C. Hohenegger (UNC): Brownian diffusion
- NSF CBET
- JSPS

