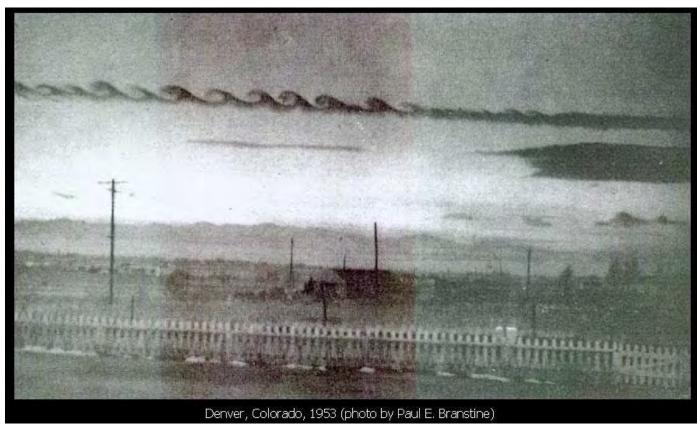
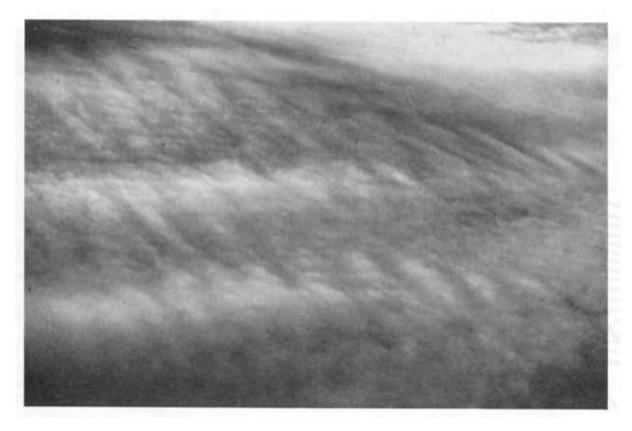
# Turbulence in Strongly-Stratified Flows


James J. Riley

University of Washington

63rd Annual Meeting of the Division of Fluid Dynamics American Physical Society

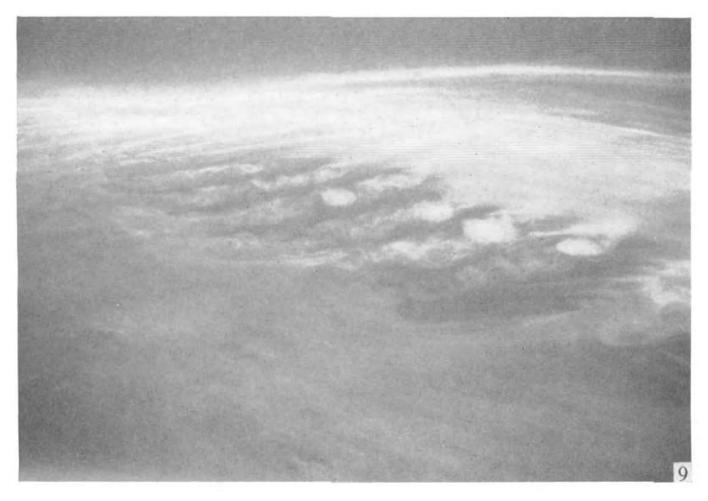
23 November 2010


### **Examples of Instabilities – Atmosphere**



P. G. Drazin and W. H. Reid, Hydrodynamic Stability, 1981

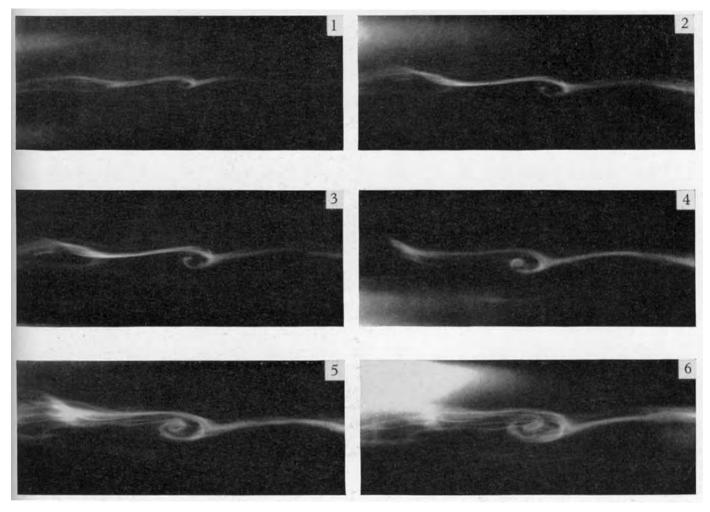



## **Examples of Instabilities – Atmosphere**



P. Atsavapranee and M. Gharib, J. Fluid Mech., 342, 1997

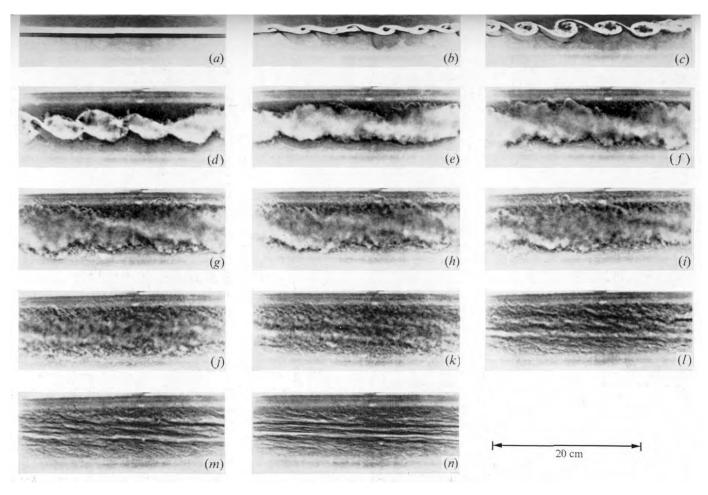



## **Examples of Instabilities – Ocean**



J. D. Woods, J. Fluid Mech., 32, 1968




## **Examples of Instabilities – Ocean**



J. D. Woods, J. Fluid Mech., 32, 1968



## **Examples of Instabilities – Laboratory**

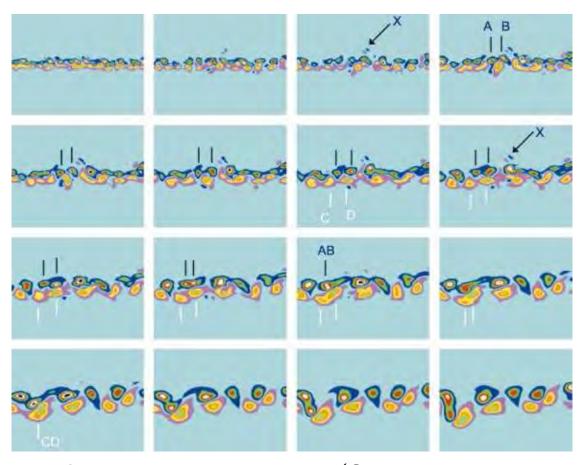


S. A. Thorpe, J. Fluid Mech., 46, 1971



#### Interest – Sources of the Turbulence

- Larger-scale motions, dynamics which lead to 3-D turbulence in a strongly, stably-stratified environment
  - control the energy transfer to smaller scales
  - overall dissipation rate, mixing rate, dispersion
  - often need to be parameterized in even larger-scale models
- lower bound is approximately the Ozmidov scale,  $\ell_O = \left(\frac{\epsilon}{N^3}\right)^{1/2}$  the maximum horizontal scale that can overturn
  - typically, in the ocean,  $\ell_O \sim 1 \, \mathrm{m}$
  - in strongly stable atmosphere boundary layers,  $\ell_O \sim 1\,\mathrm{m}$
  - in the upper troposphere, stratosphere,  $\ell_O \sim 10$ 's m




#### Sources of Turbulence in Stably-Stratified Flows

- Breakdown of internal waves
  - sources of internal waves
    - \* wind, through surface waves, weather pressure disturbances
    - \* topographic generation by islands, ridges, seamounts, etc.
      - · strong tidal influence
      - localized sources
    - \* spontaneous generation, e.g., by larger-scale motions
    - \* energy cascade from larger-scale waves
    - \* others sources (?)



#### **Laboratory Results Indicate Other Motions**



Plan view of wake at various times (Spedding, Phys. Fl., 2002)



## Sources of turbulence in stratified flows (cont'd)

- ullet Quasi-horizontal vortices 'Stratified Turbulence'  $\Leftarrow$  discuss today Lilly (1983)
  - forward energy cascade from larger-scale motions (McWilliams, 2009)
    - \* loss of balance, frontogenesis, instabilities
  - topographic generation (McCabe, MacCready, and Pawlak, 2006)
  - by anticyclonic eddies Meddies (Krahmann et al., 2008;
    Ménesguen et al., 2009)
  - Subantarctic Front (Sheen et al., 2009)
  - stable boundary layers (Frehlich and Sharman, 2010)
  - other sources (?)



#### **Characteristics of Motions on These Scales**

- Controlling parameters
  - Reynolds number:  $R_{\ell} = u'\ell_H/\nu$ 
    - \* u' characteristic rms velocity
    - \*  $\ell_H$  horizontal scale of energy-containing motions
  - Froude number:  $F_{\ell} = u'/N\ell_H \sim \ell_B/\ell_H$ 
    - \* N buoyancy frequency
    - \*  $\ell_B = u'/N$  buoyancy scale
  - Gradient Richardson number:  $Ri = N^2 / \left[ \left( \frac{\partial u}{\partial z} \right)^2 + \left( \frac{\partial v}{\partial z} \right)^2 \right]$
  - Rossby number:  $Ro = u'/f\ell_H$ 
    - \* f Coriolis frequency
- ullet For atmospheric/oceanic motions at these horizontal scales  $(\ell_H)$ ,
  - $(\ell_O/\ell_H)^{2/3} \sim F_\ell \ll 1$ ,  $R_\ell \gg 1$ ,  $R_0 = u'/f\ell_H \gg 1$

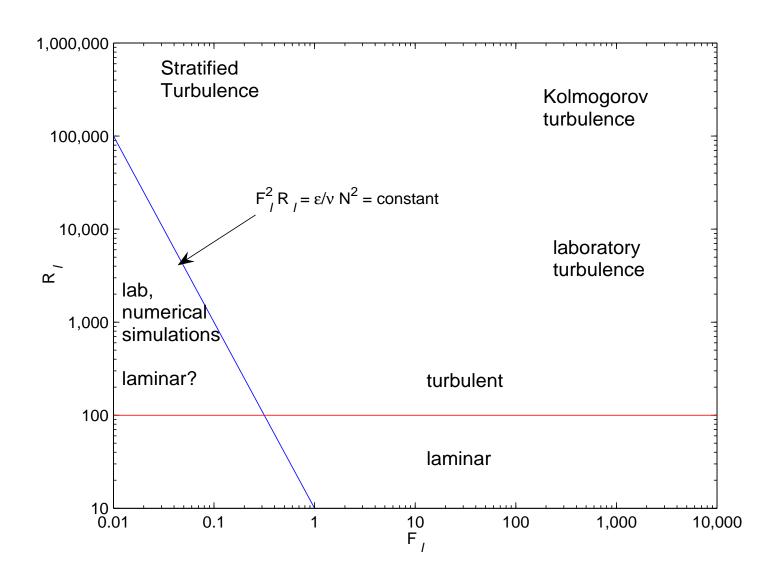
### Outline

- Describe strongly-stratified flow 'stratified turbulence'
  - provides 'pathways' to 'classical' 3-D turbulence
- Some results from numerical simulations of stratified turbulence
- Scaling arguments
  - possible 'stratified turbulence' inertial range
- Field data from oceans, atmosphere
- Some conclusions



#### **Scaling Arguments**

Turbulent flows are expected to exist, locally, when


$$Ri = N^2 / \left[ \left( \frac{\partial u}{\partial z} \right)^2 + \left( \frac{\partial v}{\partial z} \right)^2 \right] < \mathcal{O}(1)$$

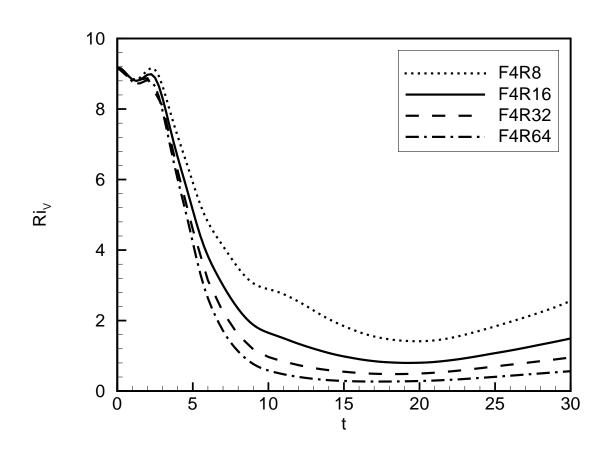
This can be shown to imply that, for turbulence to exist

$$R_b = F_\ell^2 R_\ell > \mathcal{O}(1)$$
, related to the 'buoyancy Reynolds number' 
$$\sim \epsilon/\nu N^2 \sim \left[ \left( \frac{\epsilon}{N^3} \right)^{1/2} \middle/ \left( \frac{\nu^3}{\epsilon} \right)^{1/4} \right]^{4/3} = \left[ \frac{\text{Ozmidov scale}}{\text{Kolmogorov scale}} \right]^{4/3}$$

- from oceanographic measurements, laboratory data, numerical simulations
  - turbulence is found to exist when  $R_b > \mathcal{O}(10)$

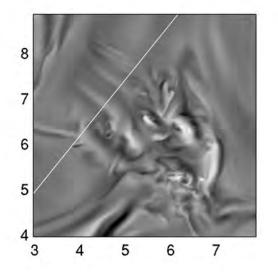
## **Stratified Turbulence (cont'd)**

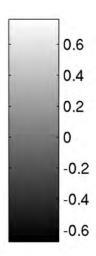


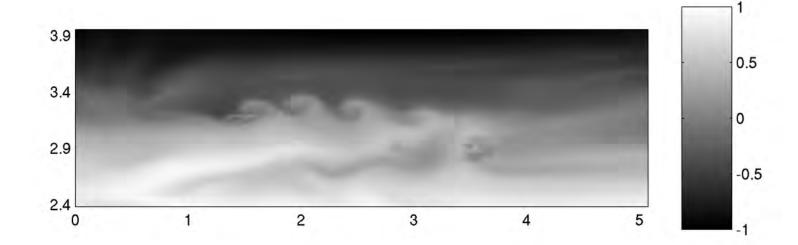



#### **Theoretical Arguments – Stratified Turbulence**

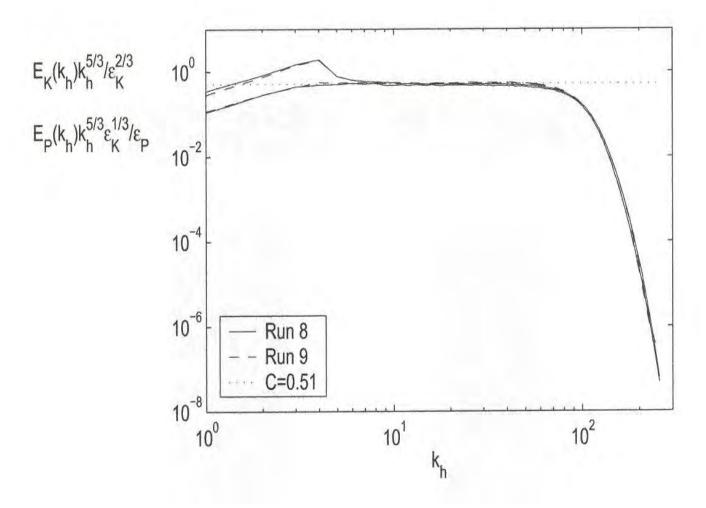
- Lilly (1983) used scaling arguments to suggest, for  $F_{\ell} \ll 1$ :
  - flows in 'adjacent' horizontal layers are somewhat decoupled
  - leads to increasing vertical shearing of horizontal flow
  - and to continually decreasing Richardson numbers
- Billant and Chomaz (2000)
  - induced velocities lead to large vertical inhomogeneities and layering
  - and to continually decreasing Richardson numbers
- Even though strong, stable stratification,
  at high Reynolds numbers, both mechanisms lead to
  - smaller vertical scales continually developing
  - local instabilities, 'classical' 3-D turbulence intermittently occurring





#### Volume-Averaged Gradient Richardson Number versus t




$$Ri_{V} = \frac{N^{2}}{\left\langle \left(\frac{\partial u}{\partial z}\right)^{2} + \left(\frac{\partial v}{\partial z}\right)^{2} \right\rangle}$$









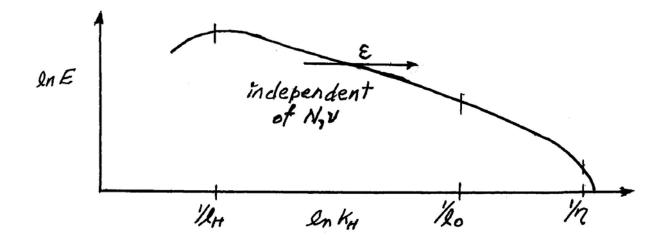

#### **Compensated Horizontal Energy Spectra**



Compensated horizontal energy spectra, Lindborg (2005,2006).



#### **Other Related Numerical Simulations**


- Simulations showing approximate  $k_H^{-5/3}$  behavior
  - Riley & deBruynKops (2003)
  - Waite & Bartello (2004, 2006); Waite (2010)
  - Lindborg (2005, 2006)
  - Brethouwer, Billant, Lindborg and Chomaz (2007)
  - Molemaker and McWilliams (2010)
  - deBruynKops (2010)
  - Diamessis, Spedding, and Domaradzki (2010)
- ullet Simulations partially consistent with  $k_H^{-5/3}$  behavior
  - Kimura and Herring (2010)



## **Scaling Arguments**

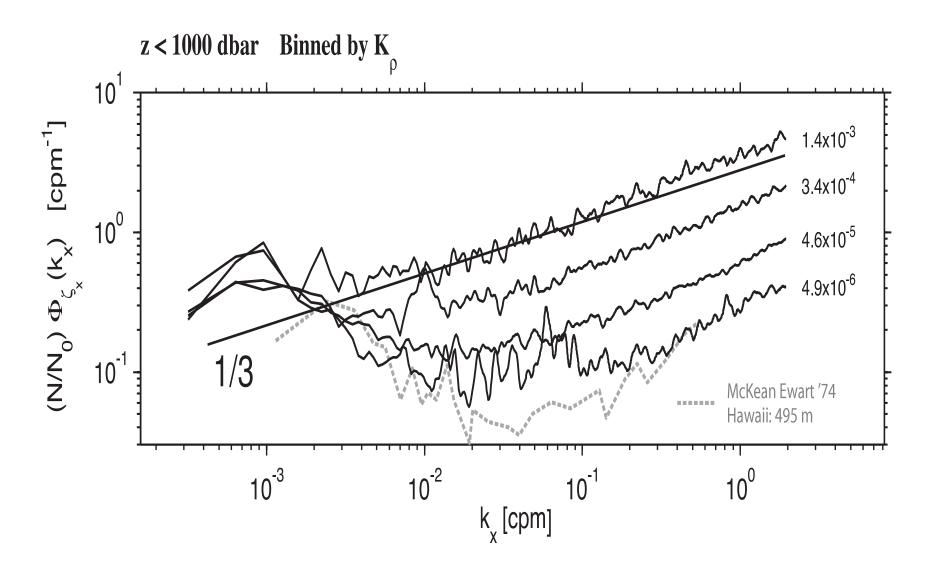
#### Assume

- $-F_{\ell} \ll 1$  (strong stratification) implies  $\ell_O/\ell_H \sim F_{\ell}^{2/3} \ll 1$
- $-F_{\ell}^{2}R_{\ell} > R_{Bcrit} \sim 20$  implies  $\eta/\ell_{O} < R_{bcrit}^{-3/4} \simeq 0.1$
- $-\epsilon \sim u'^3/\ell_H$ , independent of N,  $\nu$  ( or  $F_\ell$ ,  $R_\ell$ )



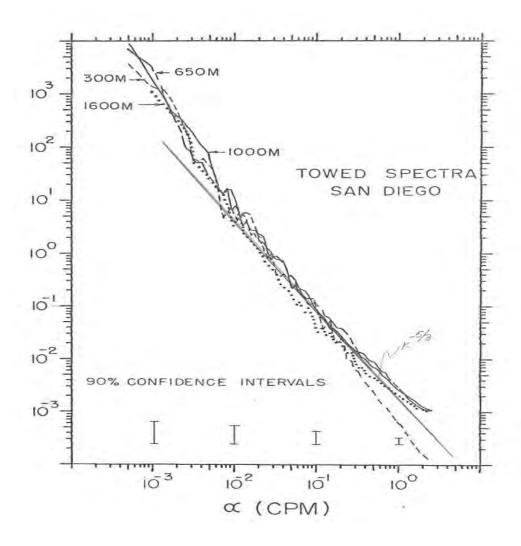
#### **Implications**

- Potential for stratified turbulence 'inertial cascade' for large  $R_{\ell}$  (Riley and de Bruyn Kops, 2003; Lindborg, 2005, 2006)
  - expect to occur at scales  $\ell_H \gg \ell \gg \ell_O$
  - if  $F_{\ell} \ll 1$ ,  $R_{\ell} \gg 1$ ,  $R_b \geq \mathcal{O}(10)$ 
    - \* highly anisotropic 'inertial' subrange in the horizontal
      - · spectral dependence only on  $\epsilon$ ,  $\chi$  and k


\* 
$$E_u(\kappa_H) = \mathcal{C}_u \, \epsilon^{2/3} \kappa_H^{-5/3}$$

\* 
$$E_{\theta}(\kappa_H) = C_{\theta} \chi \epsilon^{-1/3} \kappa_H^{-5/3}$$

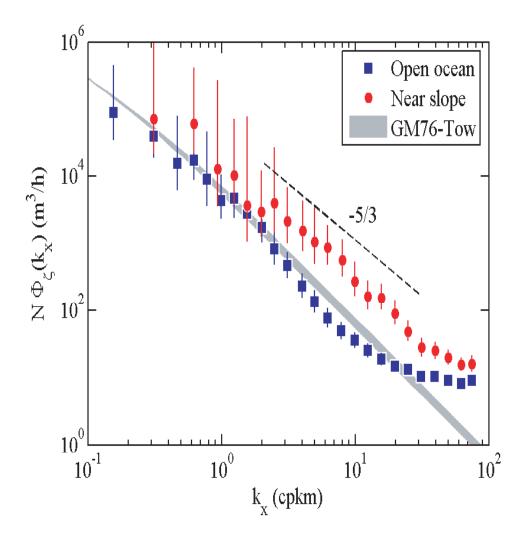
- \*  $d_H^2(t) = \mathcal{C}_d \, \epsilon \, t^3$  (patch size; possibly)
- Replaces notion of 'buoyancy subrange' (Bolgiano, Ozmidov, Lumley)
- Results from the atmosphere, oceans?




## Shear Spectra – Ocean (Klymak & Moum, 2007)



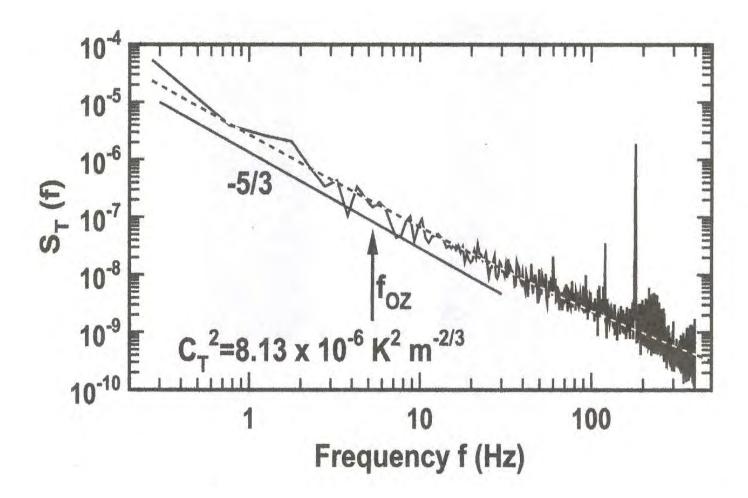



## Temperature spectra – Ocean (Ewart, 1976)



Power spectra of temperature off the coast of San Diego (30°N, 124°W).




### Displacement spectra – Ocean (Hollbrook & Fer, 2005)



Vertical displacement spectra from open ocean (squares) and near slope (dots)



#### Temperature Spectrum – Atmosphere (Frehlich et al., 2008)



Temperature frequency (horizontal wave number) spectrum in very stable atmospheric boundary layer



#### Other results from the Ocean

- ullet Other results from the ocean consistent with  $k_H^{-5/3}$  scaling
  - Sheen et al. (2009)
    - \* Subantarctic Front in South Atlantic Ocean
  - Ménesguen et al. (2009)
    - \* anticyclonic Meddies in Gulf of Cadiz
  - Krahmann et al. (2008)
    - \* same field campaign as Ménesguen
  - Bouruet-Aubertot, van Haren, and Lelong (2010)
    - \* Moorings in deep water on south-eastern slope of Rockall Channel



#### **Summary of Field Results**

- Field experiments
  - 3-D turbulence is very intermittent, sporadic
  - Often observe in the oceans at scales  $\ell_O < \ell_H < 100$ 's m
    - st horizontal spectra in velocity, temperature consistent with  $\kappa_H^{-5/3}$
    - st vertical spectra more consistent with  $\kappa_V^{-3}$
  - not classical Kolmogorov-Oboukov-Corrsin spectra
    - \* highly nonisotropic
    - \* scales are much too large
    - \* influence of stable density stratification
  - consistent with numerical simulations, scaling arguments



#### **Conclusions**

- Stratified turbulence  $F_{\ell} \ll 1$ ,  $R_{\ell} \gg 1$ ,  $R_b \geq \mathcal{O}(10)$ , a pathway to 3-D turbulence
  - e.g., at oceanic horizontal scales larger than a few meters
  - strong tendency for vertical shearing of horizontal motion
  - leads to intermittent, 3-D turbulence
  - spatial intermittency is part of a strong downscale transfer of energy
  - potential for stratified turbulence 'inertial cascade'
    - \* highly nonisotropic inertial subrange
    - \* possible explanation of field data
    - \* replaces notion of a 'buoyancy subrange'



#### Some Open Issues regarding Stratified Turbulence

- What are dynamics in 'inertial range'?
  - E.g., except in 3-D turbulent regions, vortex lines mainly horizontal.
- Role of internal waves
  - Are the density perturbations 'slaved' to velocity?
- Do laboratory results scale up to field?
  - Is there both upscale and downscale transfer of energy?
- What are the vertical spectra? E.g.,  $E_H(k_z) \propto k^{-3}$ ?
- The dynamical relationship between  $\ell_B$  and  $\ell_O$ ?
- Does horizontal particle separation go as:  $\langle D^2 \rangle = \mathcal{C} \epsilon t^3$ ?
  - Or does shear dispersion dominate?

