APS DFD 2004 Seattle

Research Directions in Unsteady Aerodynamics

P. Spalart* Boeing Commercial Airplanes

*with Strelets and Squires

Outline

- Theory:)-:
- Computational Fluid Dynamics
 - Resolved and modeled motion in ~ LES
 - SRANS; 2DURANS; 3DURANS; DES; LES
 - Resolution issue in DES/LES publications
 - Different "kinds" of unsteadiness?
- Diversion: LES of Jets and their Noise
- Experiments
 - Motivation
 - Number of dimensions
 - Transition
 - Circular cylinder, a wish list
- Summary

BOEING

(other diversion: DNS of a LEBU?)

Computational Fluid Dynamics

- Resolved and modeled motion in ~ LES
 - Ideally, the split follows clear filtering or averaging operation
 - Concretely, the split is controlled by the eddy viscosity, be it called RANS or SGS
 - Fundamental difficulty in LES remains "wall modeling"
 - QDNS, Quasi-Direct Numerical Simulation (e.g., channel at $Re_{\tau} = 1000$, with $v_t / v \sim < 2$) is un-interesting. Aim at $\Delta z^+ = 1000$, then 10^4 !
 - Accounting for the filter is especially tricky.
- Acronyms
 - RANS
 - Steady: SRANS
 - Unsteady: URANS
 - Two-dimensional: 2DURANS
 - Three-dimensional: 3DURANS (even in 2D geometry)
 - DES (3D Unsteady, boundary layers by RANS)
 - LES (3D Unsteady, boundary layers by LES, due in 2045, EVEN with wall modeling)

Resolved Solution in Different Approaches

LES or DES, coarse grid

2D URANS

Cylinder with laminar separation

DES of F-15 at 65° α Courtesy of Forsythe, Squires, Wurtzler

Re = 13.6 10⁶; lift, drag, moment within 5%

Turbulent CFD: Resolution Issue

- RANS
 - Grid convergence is easy to define...
 - And easy to achieve, even to "overkill"
- DES, LES
 - Grid convergence is not easy to define
 - The order of numerical convergence is unclear
 - We "know" a flow field with more, smaller eddies is "better"
 - It is difficult to please journal editors, as author or reviewer
 - Ideally, we'd show a neat LES, and run one 16 times bigger, simply as a check...
- DNS
 - Grid convergence again easy to define
 - We limit ourselves with the Reynolds number
 - We never "overkill" (almost never...)

BOEING

Different "kinds" of unsteadiness?

- Driven by boundary conditions
 - Low-frequency. No particular trouble
 - Medium- or high-frequency. Trouble for RANS
- Spontaneous
 - All turbulent flows have unsteadiness
 - Some have a "gross" unsteadiness, e.g., vortex shedding
 - Exists even in non-turbulent cases (e.g., cylinder at Re = 100)
 - Easy to capture, even in 2D CFD
 - Not as simple as it seems
 - Strong modulations destroy the motivation for phase-averaging.
 Seen in LES/DES, AND in Cantwell-Coles Expt.
 - 2DURANS is easy, highly periodic... and inaccurate!

Force Histories on a Circular Cylinder

The prospects for 3D URANS

- Work with Shur, Strelets, Travin, and Squires
- 3D simulations in 2D geometries, with periodicity
- Prompted by findings of Vatsa and Singer
- We used to expect RANS would force 2D
- Will show cylinder (airfoil and square-cylinder act similar)
- Findings:
 - Most often, the three-dimensionality survives
 - It is much less fine-grained than in DES or LES
 - It does not improve with grid refinement
 - The global results (pressures, drag) are much better than from 2D URANS...
 - But they depend on the spanwise period and the RANS model, and usually do not catch up to DES

The "Look" of DES and 3DURANS Flow past a Cylinder, Laminar Separation vertices of the second second

DES, period repeated

URANS, single period

Prediction of Jet Noise from First Principles

- Work with Shur and Strelets in St-Petersburg
- Turbulence:
 - LES
 - ~ 2 million points, on a PC
 - SGS model disabled, for now
- Sound:
 - Ffowcs-Williams/Hawkings formula, "adapted"
 - Permeable surface close to jet
- Performance:
 - Able to treat dual nozzles in co-flow, hot jets, chevrons, and imperfectly-expanded jets with shocks
 - Accurate within 2-3dB over a relatively wide range
 - Limited to Strouhal number ~ 2 (300Hz, for 777)

Turbulence + Shock Cells in Sonic Jet by Shur & Strelets

Numerical "schlieren" from LES of under-expanded sonic jet

Broad-band Noise due to Shock Cells in Sonic Jet LES and Experiment

Experiments

- Motivations
 - DNS, "Definitive Numerical Simulation" not possible
 - Geometry
 - Reynolds number
 - Small perturbations that control transition
 - Inflow
 - Noise
 - Surface
 - New, finer quantities needed
 - Far-field noise
 - Flow structure over very large scales
 - Study the instrumentation, not the flow?
- Two or three dimensions?
 - "3D issues" were already big at the Stanford Olympics
 - The value of "2D" flows is much lower because of:
 - Higher CFD power
 - Higher accuracy standards

Situation of the Circular Cylinder

- This flow is a Classic
 - Simple shape
 - Sensitive to transition, smooth-wall separation, and massive separation
 - Has odd flow regimes, such as permanent asymmetry
 - Good place to make CFD fail!
- The experimental job is not finished
 - Experiments disagree tangibly:
 - For Reynolds numbers in the millions
 - Just where we thought we had simpler physics!
 - Transition and separation appear mingled, even at 4 10⁶
 - Or else, we have reattachment, and turbulent re-separation?
 - Current RANS turbulence modeling is at a loss
 - RANS can do "Laminar Separation" OR "Turbulent Separation"
 - A "microscopic" DNS of the separation region could be neat

The two best experiments differ by Cp ~ 0.3, which gives CFD a place to hide!

Skin Friction on Circular Cylinder, Reynolds number in the Millions

A Wish List for the Circular Cylinder

- Reynolds number all the way:
 - From inception of drag crisis, ~ 10^5
 - To fully-turbulent boundary layers, ~ ?? 10^{6}
- Wind tunnel:
 - High aspect ratio. We could do the CFD with side walls
 - Acceptable blockage and Mach number
- Transition:
 - Natural
 - Tripped, at moderate Reynolds number, ~ 10^5
 - Tripped on one side, compared with natural asymmetry
- Measurements:
 - Pressure and skin friction
 - Unsteady forces
 - Spanwise correlation
 - Reynolds stresses?

Summary

- "Unsteadiness" is all over turbulence
- Turbulence simulations bring up "strategic decisions":
 - what to resolve, what to model?
 - beware of simplistic concepts of unsteadiness
- Sadly, the practice with RANS and SGS models
 - rarely is clearly tied to a filter
 - especially with wall modeling, which is a must
- Transition is the most delicate aspect in some cases
- Experiments must be very well-documented
- Being 2D is not that helpful any more
- They may often be limited by instrumentation
- Transition needs to be understood/dictated
- The circular cylinder remains a fabulous sand-box

"Industrial" Direct Numerical Simulation: a Large-Eddy Break-Up (LEBU) device

- Work with Travin and Strelets
- Motivation
 - Aerodynamic noise in airliner cockpits
 - Value of a small, passive, simple device
 - Applicability to other vehicles?
- Objectives
 - Reduce wall pressure fluctuations of TBL (one that is attached to start with)
 - Reach benefit of several dB
 - Beat "rule of thumb" that a TBL recovers in 10 δ

Turbulence-Damping Device

(ignore red circles)

"Industrial" Direct Numerical Simulation: a Large-Eddy Break-Up (LEBU) device

- Approach
 - DNS at $R_{\theta} \sim 1000$ (OK, since focus is on $St_{\delta} < 1$)
 - Multi-block high-order implicit code
 - Turbulent inflow by simplified Lund-Wu-Squires recycling; uses up less than 5 δ
- Findings
 - Vortex generators tried first. They reduce TKE, as expected, but not the wall pressure rms
 - LEBU, looking like "highway bridge", lowers p' rms by 30% (or 3dB), but only over ~ 30cm
 - We have not optimized the design
- Experiment
 - In wind tunnel, with extensive measurements + structural model of window
 - In flight!

BOEING

Effect of LEBU in Turbulent Boundary Layer

Effect of LEBU in Turbulent BL

