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High Re large scale separation

large scales: energy containing eddies

The classical theory tells us (and 
most modern texts as well) all jets 
are alike asymptotically � only the 
initial momentum matters.

Even the Reynolds number has been 
believed to be nearly irrelevant.

small scales: energy dissipation (1mm 
or less)
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But jets 
really 

don�t all 
look 
alike.
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And Reynolds number certainly plays a role

Low
Reynolds #

2 300

High
Reynolds #

65 000

� especially if it is too small.
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Equilibrium similarity provides a way to 
understand this...
� Consider the fully-developed axisymmetric jet
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SINGLE POINT EQUILIBRIUM SIMILARITY
� Change variables to:

etc., where:                 
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� Momentum equation for jet transforms 
to:
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All explicit x-depen-dence
in square brackets.
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EQUILIBRIUM SIMILARITY 
HYPOTHESIS

� All of the terms in square brackets of the 
equation must evolve with downstream 
distance in exactly the same way (unless 
they are identically zero).  

� There are no further assumptions.
� If no solution consistent with  boundary 
conditions, none will be found.
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� If we divide by second term, 
momentum equation for jet reduces to:
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� The single bracketed term remaining can 
at most depend on the upstream conditions.
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� We can redefine the Reynolds stress 
profile function g to absorb the constant; 
i.e.,
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� Clearly the solutions are dependent only on         

, since there are no parameters left.η
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� Generally not possible to do this for 
Reynolds stress equations.

� So, profiles of turbulence quantities 
will be different for different upstream 
conditions.

Mean momentum equation:
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( ) 1−−= oc xxaU
),(2/1 oxxb −=δ

� Thus mean velocity and properly scaled Reynolds 
shear stress profiles should be universal.

� BUT the growth rate             and centerline velocity 
decay     can reflect source conditions, i.e.,

dxd /δ
cU

� Constants a and b depend on source conditions (c.f., 
Grinstein (2001), Boersma et al. 1998, Slessor et al. 
(1998), Nobis et al. 2001, Cater & Soria 2002, 
Westerweel et al. 2002).

Half-width:
Centerline velocity:
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� Even in late 80�s, it was clear  the two-point 
equations must play a major role.
� Dissipation scaling determined (or reflected) the 

spreading rate and its dependence on source 
Reynolds number: 

constUc == νδ /Re 2/1

2
2/1

2
2/1

3 // δνεδε cc UvsU ∝∝
� Differences obscured by fact that turbulent jet 
evolves at constant Re, no matter the source 
Reynolds number i.e.,
� Consequence of momentum conservation, M=Mo.
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This opens interesting new opportunities:
� Complete similarity analysis of the two-point

Reynolds stress equations possible since 
axisymmetric jet evolves at constant local 
Reynolds number,            (Ewing 1995).

� Streamwise growth is removed by stretching the 
coordinate system logarithmically.
� Similarity variables are:

θδηξ ),(/,/)(ln xrDxx o =−=

νδ /cU
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� The two-point equations are quite 
complicated, and even resulting constraints 
are not trivial...
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where

Scaled turbulence moments are 
homogeneous in ξ´-ξ and θ´-θ.

η = r/δ1/2ξ = ln[(x-x0)/D] and

Qi,j= Qi,j(ξ´-ξ, η,η´, θ´-θ),

Two-point velocity correlation tensor become
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TWO-POINT CORRELATIONS

214291764785714N

58.343.330.3x/D

LDA/HW Fronapfel et al. 
2003 APS



Chalmers University of TechnologyDepartment of Thermo and Fluid Dynamics Turbulence Research Laboratory

Copyright William K. George, 2003

Two-point correlations of streamwise velocity

]/)ln[( Dxx o−≡ξ)],'/()ln[(' oo xxxx −−=−ξξ

LDA/HW Fronapfel et al. 2003 
APS

PIV: Eljack et al. 2003 APSReD=30,000

ReD=2,000

data of Westerweel et a
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IMPLICATIONS
� POD application to inhomogenous flows of 

infinite extent (like streamwise direction of 
jet) is problematical since solutions depend 
on the domain chosen.

� BUT since the streamwise direction of the 
transformed jet is homogeneous in similarity 
variables ...

Dx /ln=ξ
� solution to POD integral in the streamwise 
direction is Fourier modes in                  .
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Jet flow field (PIV data of Westerweel et al. 2002)
Physical coordinates

Similarity coordinates
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Reconstruction using POD modes 1-10
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Reconstruction using radial POD modes 1-2 
and all streamwise wavenumbers.
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Reconstruction of instantaneous field using POD 
only radial mode 1 and all streamwise
wavenumbers
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all wakes don�t look alike either.
Now for a more difficult problem...:
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Wakes behind four 
different axisymmetric 
generators ... suggesting 
strongly that far wakes 
retain dependence on 
initial conditions. 
(Cannon 1991).

In fact, upstream (or initial) conditions are 
remembered far downstream!
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These high Reynolds number axisymmetric wake 
profiles are nearly identical

Cannon porous disk  1991 Gourlay et al. 
DNS 2001

- as both the equilibrium 
similarity and classical theories predict.

Johansson  
disk 2002
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But only equilibrium similarity can explain this.

From P. B. V. Johansson et al. 2003 Phys. Fluids
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Clearly structure does matter...

These pictures were telling 
us something after all.
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But there remains a problem for the 
axisymmetric wake...

� The local Reynolds number for the high 
Re solution decreases with downstream 
distance, i.e.,

3/1)(/)(Re −
∗∞ −∝−= ocl xxUU νδ

� Thus our infinite Re equations slowly 
become invalid� if they ever were 
valid in the first place.
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This animation gives a clue.  Note how the vortex 
cores thicken as wake evolves downstream.

DNS of axisymmetric wake:  wake generator moves from 
right to left. Gourlay et al. (2001)

�
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Equilibrium similarity of 
Reynolds stress equations 
demands that                 
be constant.

Low local Re, far wake
δ ~ x1/2 regime
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Johansson et al 2003 Phys. Flds
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� Deviations from high
Re solution occur 
quite early � not nea
turbulence Re of 
unity, but several 
hundred!

� NOT 
laminarization, 
but low Re 
turbulence.
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Johansson et al 2003 Phys. Flds.
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There is a second similarity state... 
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to which the flow evolves � and stays 
forever.
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Other examples of evolving flows
� The outer part (90% plus) of turbulent 

boundary layer flows do this in reverse.

� As the Reynolds number increases 
downstream, they evolve toward the infinite Re 
solution (which is the only equilibrium 
similarity solution).

� This can be quite frustrating to those who want 
simple scaling laws for finite Re experiments or 
DNS.
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Even so, sometimes the asymptotic equilibrium
similarity solutions can work quite well � especially if driven 
by a strong shear, imposed strain rate or pressure gradient.

Plane walljet, George et al. 2000 JFM
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y1/2M0/ν
2

10
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U
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ν/

M
0

AVKL pulsed HW 10,000
AJL HW 15,000
AJL HW 20,000
KEP LDA 10,000
WKH HW 10,000
WKH HW 19,000
eqn. (5.12), using n=−0.528, B1=1.85

Max velocity vs half-width

Mean velocity
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Result of using near-asympototics to �match� outer 
equilibrium similarity solution to inner is that normal 
stresses scale differently than shear.

Streamwise normal

Reynolds shear stress

Plane walljet data Abrahamsson et al. 1997

2
*

2 / udxdU →∞ δ
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Equilibrium similarity of 
pressure gradient boundary 
layer implies 

0,/1 ≠Λ∝ Λ
∞Uδ

Adverse pressure gradient

Favorable pressure gradients
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Bradshaw: Mod APG

Adverse pressure gradients

Favorable pressure gradients

The velocity profiles 
collapse pretty well too 
in equilibrium similarity 
variables � especially 
with the Smits-Zagarola
scaling to remove the 
Reynolds number and 
upstream dependence.

Castillo and George 2001 AIAAJ
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... and even for zero pressure 
gradient.

Wosnik 2000, Castillo et al. 2001
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Obviously which terms come into 
play and where is very important.?

� Best example of this are the strained wake   
DNS of Rogers (2003 JFM).

� Ten different time-dependent equilibrium 
similarity solutions were identified, depending 
on the orientation and magnitude of the applied 
strain rate.
� Equilibrium similarity solutions appear to 
behave as very powerful �attractors�.
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EkT
t
E 22ν−=

∂
∂

� Spectral energy equation

� E(k,t) is three dimensional energy 
spectrum function (averaged over spherical 
shells of radius k).
� T(k,t) is the non-linear spectral transfer.

Some problems remain for 
isotropic decaying turbulence:....
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George 1992 Phys. Fluids (G92) 
seeks single length scale  
similarity solutions of  type:
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Spectral Similarity Equation

Equilibrium similarity hypothesis:
All of the terms in square brackets of the equation 
must evolve with time in exactly the same way 
(unless they are identically zero).  There are no 
further assumptions.
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λ2/uE
F=

λk

de Bruyn Kops/Riley DNS data 
(512 cubed)

0.29 < t < 0.81

� Theory implies spectra collapse (for fixed 
initial conditions) when plotted as:

George and Wang 2002
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de Bruyn Kops/Riley DNS data 
(512 cubed)   0.29 < t < 0.81

dissipation 
spectra

enstropy
production 
spectra

Wang and George 2002 JFM
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� G92 equilibrium similarity theory 
deduces that the non-linear transfer is 
related to spectrum by:

where and n is determined by the 
initial conditions

FkFFkF
n

G
2

2]10)'(5[ +−+=
ntu ∝2

� There are no adjustable parameters since initial 
conditions determine the decay exponent, n.
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Wray DNS data

, n = 1.5
2/ uT

G
νλ

=

Non-linear transfer spectrum at single time

50=λR

λk

FkFFkF
n

G
2

2]10)'(5[ +−+=

George and Wang 2002
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T lam/nu/u2 vs klam
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George and Wang 2002
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Experiments of Helland, van Atta and Stegun 1977

237=λR , n=1

2/ uT
G

νλ

=

λk

FkFFkF
n

G
2

2]10)'(5[ +−+=

George and Wang 2002
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DNS spectral plots from Antonia and Orlandi 2003

Spectral transfer - velocity
Spectral transfer - scalar
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� In spite of this ... still disagreements about 
whether the derivative skewness behaves as the 
theory dictates.

� And there is still discussion about the behavior of 
the overall scaling, integral scales, etc.

� Does this reflect a problem with the simulations 
and experiments?

� Or is there something missing in the theory?  
(E.g., like there was for the axisymmetric wake.)
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� Integration of equilibrium similarity 
spectral equations for decaying 
homogeneous turbulence deduces directly 
that: ε−=

dt
dk

and
k

C
dt
d 2

2

εε
ε−=

nnC /)1(
2

+=εwhere .

� BUT the theory also deduces that n is 
determined by the initial conditions!

Implications for Turbulence Models
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Conclusions from Equilibrium Similarity

� The k-epsilon �model� is EXACT, at least for 
homogeneous turbulence.

� BUT the coefficient         depends on the initial 
conditions, in fact probably on the initial turbulence 
energy spectrum.

�VERY BAD news indeed, since there is no way to put this 
information into a single point turbulence model (structure-
based models ??). 

2εC
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Summary and Conclusions
� Initial and upstream conditions affect (and even 
dominate) the asymptotic state of many turbulent 
flows.

� Equilibrium similarity theory accounts for 
(and expects) this behavior.

� Two-point manifestations may provide the clues 
and tools to understand how and why.


