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FLIGHT MUSCLES
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WING HINGE

WING MOTIONS AERODYNAMICS FORCES

CNS

How much of 
the control 
resides in 
neural 
pathways 
versus non-
neural 
mechanisms?
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A summary of insect flight issues

A thought experiment about wing or fin inertia

The coupled problem of fluid-solid interactions

Under what conditions can we ignore such 
interactions in air?

When we can ignore them, how might we 
proceed to analyze flight with compliant wings?
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Dickinson’s “Robo-fly”*

- Dynamical scaling: Reynolds number and reduced frequency parameter 
conserved
- Motors allow any arbitrary 3-D kinematic pattern
- Force sensors measure instantaneous forces on the wing

* Sanjay Sane, UW; Mark Willis,CWRU
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Trajectory of forward flight and net 
aerodynamics forces measured by Robofly

Average forces ~ mg

Sane, Johnstone, Dickinson and Willis

 

Copyright Tom Daniel, 2004 



Such physical models work well for wings 
whose flexion is rather minimal.
It is difficult to scale elastic and fluid dynamic 
stresses simultaneously

Dalton, 1975
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Many wings flex significantly

Brackenbury, 1992
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mB g/2

Θ

L

Scale question:
How large are the 
aerodynamic moments 
relative to inertial/elastic 
moments?

A[l ] dl

MAERO ~  mB g L/4           

MINERT   ~ ρapp ∫ l 2 Θ ω2 sin(ω t) A[l ] dl
~ mappL2 Θ ω2 /3

MRAT = MINERT /MAERO
~    (mapp/mB) L Θ ω2/g

~ 5.0 Manduca
~ 50.0 Drosophila

See as well Ennos ‘89, Zanker and Götz ‘90
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“Robo-Bush”

Looming
Lateral

Vertical

Computer 
Controlled 

Flower!

camera

Need high-speed videography of flapping wings 
during maneuvers.

unfettered flight

Carlos Moreno
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Movie not available

•To what extent are these motions determined by fluid 
dynamic events?
•What are the mechanical properties of these wings?

Michael Tu and Katarzyna Kodizcezswka
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Measuring displacement continuously along a wing

wing

45

Combes and Daniel, 2004   
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Changes in the y-direction of the picture correspond to
bending in the z-direction of the wing

unloaded
wing

loaded
wing

x

y

z
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Possible patterns of spatial variation in wing stiffness

wing 
stiffness

wing span or chord

constant

linear
exponential

polynomial

F

L

heterogeneous beam
infinite∞

Combes and Daniel 2004
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minimization

Solve for the EI distribution that best fits 
the measured wing displacement

EI(x) =
F(L − x)
d2δ / dx2

 

Copyright Tom Daniel, 2004 



Spanwise wing stiffness flexural stiffness 
declines exponentially in span and chord directions
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Wings flex. Wings flex. 
With measured With measured 
mechanical, geometric, mechanical, geometric, 
and and kinematickinematic
characters…characters…
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…. use FEM to compute 
motions.  From that 
compute aerodynamic 
forces

Movie not available
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(Dalton, 1975)

Broad- bordered yellow Underwing
Lampra fimbriata

Aerodynamic force calculations from FEM are 
illegal when wing bending depends strongly on 
aerodynamic loading. 
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Shape 
(curvature, 
angle of 
attack) 
determines 
the pressure 
distribution.

Flexible wings 
deform when 
moved 
dynamically. Pressure 

stresses 
deform 
flexible wings.

The basic aeroelastic problem
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A scale argument for a thin flexing wing

Movie not available
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Imbue with
Stiffness (E)
thickness (t)
width (w)
EI (flexural stiffness)
density (ρ)

x

y

What deformations -- y(x,t) arise?
What bending moments follow from this y(x,t)? 

Impel with
A sin(ω t)

A scale argument for a thin flexing wing

Movie not available
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Impel with
A sin(ω t)

x

y

Imbue with
Stiffness (E)
thickness (t)
width (w)
EI (flexural stiffness)
density (ρ)

A different tact :

Solve this wave equation
∂y2/ ∂ t2 = -(EI/ρA) ∂y4/ ∂x4

with the right boundary 
conditions 

⇓
y(x,t)

⇓
Moment = EI ∂y2/ ∂x2

What deformations -- y(x,t) arise?
What bending moments follow from this y(x,t)? 
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x

y

y(x,t)

Imbue with
Stiffness (E)
thickness (t)
width (w)
EI (flexural stiffness)
density (ρ)

A different tact :

Inviscid blade-element
analysis (from Wu,1971)

Wu 1971 set this up

Melastic
p(x,t) ->  Mfluid(x,t)

->  ∫∫Mfluid(x,t) ->  Mfluid

Manduca : L = 0.03,w = 0.01, ω = 2 π 25
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Dynamic bending moments are dominated by 
elastic/inertial phenomena
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Inertia is generally large
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Thrust depends on emergent deformations 
(non-monotonically).
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Can we trust the theoretical results?
Set density to as low as possible to eliminate fluid 

dynamic loading and query wing shape.

fresh Manduca wing on motor

remove 50%
of air volume

add Helium
(~20% air density)
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normal air density 10% air density

Movie not available
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Quantify wing bending at the wing tip, leading edge, and trailing edge

26 Hz, normal air
0 degrees

lead

tip

trail

trailing 
edge
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Quantify wing bending at the wing tip, leading edge, and trailing edge

0.5 Hz26 Hz, normal air
0 degrees
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Evidence of bending on the air flow?
Measure self-generated flows 
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Raw data of self-generated airflow
At Antennae Behind wings
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Spectra of recorded airflows

At antenna

Behind wings
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Aerodynamic signature of wing flexibility
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Summary
•Animal wings deform in response to both fluid 
dynamic loading and their own inertial 
mechanics.

•Simple scaling arguments suggest appendage 
inertia may dominate moments for “rigid” wings.

•Bending moments of wings are dominated by 
elastic/inertial mechanisms in air.

•There is a clear aerodynamic signature of 
bending wings.

•Thus we could use simple explicit methods for 
evaluating forces on flexible wings in air.  
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SENSORY INPUT

MOTOR OUTPUT

FLIGHT MUSCLES

FORCE, STRAIN

WING HINGE

WING MOTIONS AERODYNAMICS FORCES

CNS

Insect wings 
are equipped 
with a large 
number of 
strain sensors 
on their wings.
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Anemometer Calibration
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