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Motivation

Large vibrations of:

Riser tubes bringing oil from the seabed

——— * Bridges and chimney stacks

Heat exchangers

Overhead power cables

Many other applications

Tacoma Narrows Bridge Hoover Diana Project
Exxon-Mobil



Generic -Universal Nature of
Diverse VIV Systems

Paradigm for more

complex systems \
U

GENERIC PHENOMENA

Y-CYLINDER XY-CYLINDER

Carry across to:

High Re All VIV Systems

PIVOTED ROD FLEXIBLE CYLINDER

* MIT, Norway, Exxon

STRUMMING CABLE TETHERED SPHERE
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Does Resonance Look
Anything Like This?
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Parameters in the problem

v

* Flowspeed U — U* =
f D

Expect resonant oscillation fo~ f

\ N T

U U 1 NORMALIZED VELOCITY
@_ fND_fVD_S@

* Oscillating mass m — m
* =
displaced fluid mass
Air — m* is large ~ O(100) ¢
MASS RATIO
Water — m* is small ~ 1-10
 Structural damping ¢ — B c
critical damping
m*{ = mass-damping parameter 0
\ DAMPING RATIO
VERY LOW VALUES

HERE !



Typical VIV System

Equation of Motion:

my +cy + ky = Fyq

Cylinder displacement: y(t) = Asin ot

. , ¢ IS VERY
Fluid force: F() = F sm(a)t + —

IMPORTANT !

Amplitude response

A 1 C, sing (U'Y ..
D (M +C)| 47 |f
=

MASS-DAMPING PARAMETER

Frequency response

f*:i: M C., = 13*(U*jCYcos¢
fn (m +Cg,) 2 AT

\ DEPENDS ON m*
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What is known about the wake vortex dynamics

for a transversely oscillating cylinder

Williamson & Roshko (1988)

Example vortex wake modes

‘2S” MODE

2 single vortices / cycle

‘2P MODE

2 pairs of vortices / cycle

2P — Ongoren & Rockwell (1988)
for in-line oscillations
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Map of Wake Modes

Williamson & Roshko (1988)

(P+S)

Coalescence of
vortices in
near wake
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High Mass-Damping

2 Modes

1 Discontinuity
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Experiments in AIR Feng (1968)
m* ~ 100-200 Brika & Laneville (1993)



Experiments in WATER
m* ~5

|

Khalak & Williamson
(1996, 1999)

A max
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Low Mass-Damping
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Initial
excitation

(@)

Lower
branch

Desynchronization ]

U*

3 Modes

2 Discontinuities

» Large A*

* Wide regime of resonance

| _— f>1.0!

Depart from classical resonance



2.0

A* 1.0

0.5k

2.0

A* 1.0

0.5

Very Low m*

No observed
synchronized
pattern

(a)

20

No observed
synchronized
pattern
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(b)

2
(U*f*)S

Very Wide Regime !

Collapses beautifully with:

U _ fu
f f T~

Suggests W-R Map:

Initial — 2S
Upper — 2P
Lower — 2P

|

Now see VORTEX MODES !

Ratio of the
2 most basic
frequencies



Vortex Modes

Initial Branch

=52

Lewer Branch

Initial Branch

‘2S,

Lower Branch
[4 2P bl

Seen effects:
m*¢, m*

See extreme later



Numerical
Simulations
& Laminar

VIV




Consistent with

A*  <0.6

peak

Compilation of Low-Re Results

0.75

Hysteresis

Vortex mode
changes to
P+S

A*>0.6

P+S mode must not be able to
impart positive energy transfer

Le.C sin¢p<0

Anagnostopolous & Bearman (1992)
Anagnostopolous (1994)

Newman & Karniadakis (1997)
Shiels, Leonard, & Roshko (2001)
Wilden & Graham (2000)

Experiment

Numerical simulation

Ponta and Aref (2003)
Meneghini & Bearman (1995)



VIV Simulations

Blackburn et. al. (2001)
Lucor & Karniadakis (2005)

Govardhan & Williamson (2000)

Experiment 3D DNS
— <4
Challenges for CFD:

* Must use 3D simulations to produce:
* ‘2P’ mode
s A*>0.6

* Pushing up Re:
* 1995 Re,, ~200 (Newman & Karniadakis)
* 1999 Re, . ~2000 (Evangelinos & Karniadakis)

*2005 Re,, ~3000-10,000? (Lucor & Karniadakis......... )

* LES:
* Not yet good agreement with experiments or between LES studies.



Flexible

“

XY Motion &
Complex Flows

AN
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Tethered



. Jauvtis & Williamson
X-Y Motion JEM (2004)

_______ ———- A% =151 [Much biggej

than Y-only

02} a8 Slight streamwise motion
S8 .
has dramatic effect !

NOTE: Forced motion of
Jeon & Gharib (2004)

U#

3 2T MODE

Small change in ¢ due
to vortex dynamics

|

) i Big change in A*




Spanwise Variation of A* Techet, Hover, &

Triantafyllou (1998)

no pattern
observed

0.5

TAPERED CYLINDER

0.5 1 1.5 2

(U /f)S

25

Williamson-Roshko Map:

Suggests you can get 2S along part of span,
2P along other part of span

ﬂ, 2S-2P Hybrid Mode

Relevant to Cable Dynamics

G‘Gumby”



1.5

(U /f)s

2 =3

Pivoted Cylinder

Simplest case of spanwise amplitude variation

2C MODE

relevant to cable dynamics

Cross over of
branches

l

Need 3D W-R Map

I

Flemming & Williamson (2004)

2S-2P
Hybrid

(@} 25-2P Hybnid Mode

Biggest amplitude
mode

l

2C Mode
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(b} 2C Mode




Lift
force

Sphere VIV

Mode 11

Analogy to airplane trailing vortices

Sphere wake

Aircraft trailing vortex wake

Lift
force

vl

¢

/msa-mliolml
plane

Govardhan & Williamson (2005)

Streamwise vorticity




PEAK

Griftin Plot

>
MASS-DAMPING

Perhaps the most basic question !

— What is A*



Classical Griffin Plot

log-log First extensive compilations of many studies

Griffin, et. al. (1975)

100 -

6.0 Appears to saturate to limiting value

=8 /
X

RANGE OF
1.0 - LIMITING DISPLACEMENT \ Avi%
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Skop-Griffin parameter
(m*C « S%)




linear-log

Big
Scatter !

*

A

MAX

0.5 F

in - water
in - air

100

All Cases:

* Y — cylinders

* Pivoted bodies

* Flexible Cantilever

.. + others



Slightly Better
Collapse

A MAX

1.3

o Cylinder
D%. A .
Lk @ y-motion
bp“ Only
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A%y« NOT SATURATED !

After 30 Years ...

The Griffin Plot is not yet
fully defined !

Even for the paradigm case !




Controlled Damping

NEGATIVE ZERO POSITIVE
Damping Control
—
by /
y (cm)
2
| ooy
log(A) h
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: A A . i . i i L 1 i ; i N 1
0 50 100 150

Time (secs)

Damping Control Works !



1.4

0.8

0.6

0.4

0.2

Effect of Re

- CLEAR EFFECT OF

B INCREASING Re

: Re = 12000

j Re = 4000

B .

N Re = 1250

i | 1 I 1 1 lJl 1 1 1 L1 11 I| 1 1 L1 1 11

0’ 107 10" 10
o

Note: curves look
similar for each Re



0.5

Effect of Re

A

Caltech

Ao = log,,[0.4]1 Re"]

- Laminar
L1l R | 1 A e I 1 RN
10° 10° 10° 10°
Re ALSO:
Klamo, Leonard, & Roshko
11 f : ’ ’
Good collapse of data (200%)

Independently find trend of
amplitude increase with Re

(controlled damping)



The “Modified Griffin Plot”
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Collapses our

data well !



Can we now collapse

the large scatter in the classical Griffin plot

) A
AMODIFIED — T ?
A 0

o=

Take into account Re !




Griffin
Plot

“Modified
Griffin”
Plot

0.5 -

0.5

10°

4y =1-112a+030a°

1 [ |

1

I S T

107

10°

Data collapses onto
a single curve !



Critical
Mass
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Equation for Oscillation Frequency
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Bestfit: | Cy,=-0.54

® Govardhan & Williamson (2000)

A Khalak & Williamson (1999)

[=] Hover, Techet & Triantafyllou (1998)
®© Anand (1985)



e ] (m o+
U1 (m" — 0.54)

CRITICAL MASS RATIO

m* cpr = 0.54

If m*— 054, f*>wx

If m*<m* g, * Lower branch does not exist

 Get stuck on upper branch



¥ i

1.0
A*

0.5

0

0?

m* = (.52 /

B e Slope =0.174
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What if m* below critical ?

Radically different from
classical resonance

8
"~

Consider :

U* =100
U* =500

£ ~17f,

0sC

f .~ 871

Why not ?



[ You are here

A\ 4

Get bigger / faster water channel

Reach much higher U*
A* * \ 4
Present W.C. Civil Eng. W.C,
@ @
= U*
Will not prove anything !

A\ 4

GO RIGHT TO INFINITY ! =—>



Infinite U*

U

U* =

f, D
U-—> NO'!
D—>0 NO!

fy—0 YES !

fy ~vk/m ... makek=0

\/

REMOVE SPRINGS !



Remove springs !!!

m* =1.7

 Easily move with a feather
* Strong vortices......

Expect large vibrations

....Now what happens ??7?



Ol=

m*=1.7

k=0, NO SPRINGS

Time trace

10
0T,

20



Ol'=

m* = 0.6

k=0, NO SPRINGS

Time trace

0 20
0T

Now: Remove mass gradually



m* = 0.53

k=0, NO SPRINGS
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1.0

0.5

Experiments for INFINITE U*

1.5



Rising Cylinder Trajectories

m* = (.78 m* = (.45



m* = (.08

Vortex Dynamics Behind a Rising Sphere




Vortex Dynamics Behind a Rising Sphere




