58th Annual Meeting American Physical Society Division of Fluid Dynamics

The Fluid Mechanics of Fires

Howard R. Baum

National Institute of Standards and

Technology

Gaithersburg, MD. 20899

TOPICS

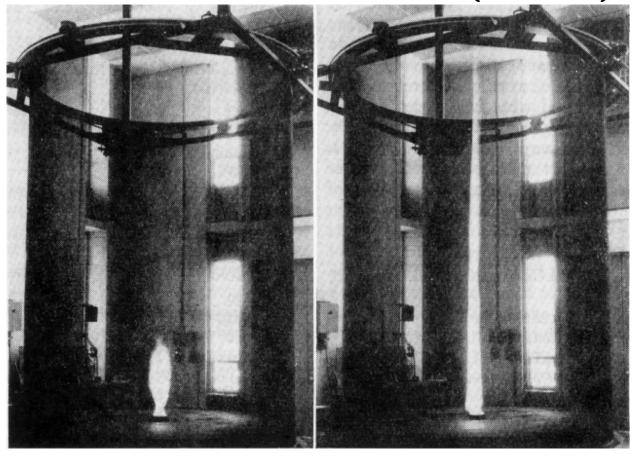
Plume entrainment dynamics

Mass fire induced flow fields

Dispersion of smoke plumes

Fire whirl dynamics

World Trade Center fires


FIRE WHIRLS

Courtesy F. Battaglia

- Externally maintained circulation interacts with fire induced vorticity
- Fire concentrates vorticity along nominal plume centerline reducing entrainment
- Dramatically enhanced flame height

EMMONS - YING (1966)

- Burning acetone pool inside rotating screen
- ullet Flame height reached \sim 30 pool diameters
- Flame stable for long periods of time

INVISCID MODEL

- Low Mach number thermally expandable fluid
- Steady, axially symmetric flow
- No combustion or entrainment

$$\nabla \cdot (\rho \vec{u}) = 0$$

$$\rho \left(\nabla (\vec{u})^2 / 2 - \vec{u} \times \vec{\omega} \right) + \nabla \tilde{p} - \rho \vec{g} = 0$$

$$\rho \vec{u} \cdot \nabla T = 0$$

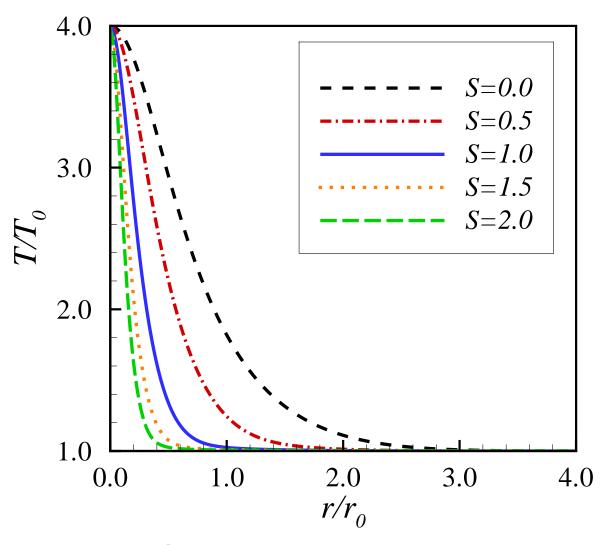
$$p_0 = \rho \mathcal{R} T$$

$$p = p_0 + \tilde{p}$$

ANALYSIS

Yih Transformation

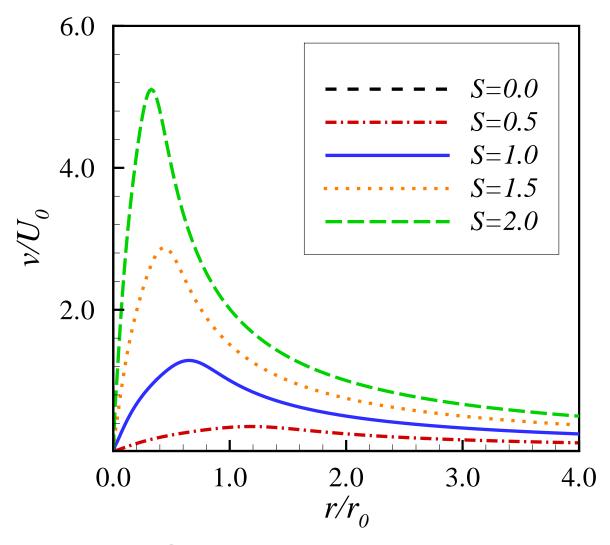
$$\vec{u} = \mathbf{u}'\sqrt{T/T_0}$$
 $\frac{\partial \psi}{\partial z} = -ru'$ $\frac{\partial \psi}{\partial r} = rw'$


Partial Integrals

$$(T - T_0)/T \equiv \theta_0(\psi) \quad \Gamma \equiv 2\pi r v' = \Gamma_0(\psi)$$
$$\tilde{p}/\rho_0 + (\mathbf{u}')^2/2 + gz \equiv \mathcal{H}_0(\psi)$$

Stream function equation

$$r\frac{\partial}{\partial r}\left(\frac{1}{r}\frac{\partial\psi}{\partial z}\right) + \frac{\partial^2\psi}{\partial z^2} = r^2\left(\frac{d\mathcal{H}_0}{d\psi} + gz\frac{d\theta_0}{d\psi}\right) - \Gamma_0\frac{d\Gamma_0}{d\psi}$$


TEMPERATURES

Courtesy F. Battaglia

$$S = \Gamma_{\infty}/\left(2\pi r_0 U_0\right) \qquad U_0 = \sqrt{2gr_0\left(\frac{T_m - T_0}{T_0}\right)}$$

SWIRL VELOCITY

Courtesy F. Battaglia

$$S = \Gamma_{\infty}/\left(2\pi r_0 U_0\right) \qquad U_0 = \sqrt{2gr_0 \left(\frac{T_m - T_0}{T_0}\right)}$$

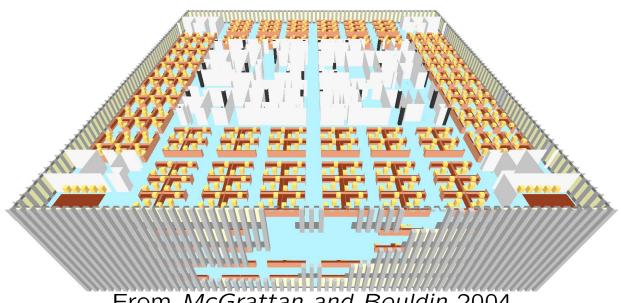
WORLD TRADE CENTER TOWER COLLAPSE ANALYSIS - A SYNOPSIS -

©2001 Sara K. Schwittek All rights reserved

TECHNICAL COMPONENTS

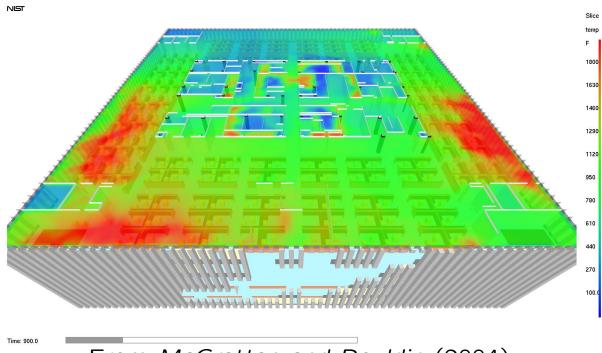
Fire Scenario Descriptions of building geometry, materials, and initiating event(s).

Fire Dynamics Simulations of combustion, fluid mechanics, heat and mass transport in gas.



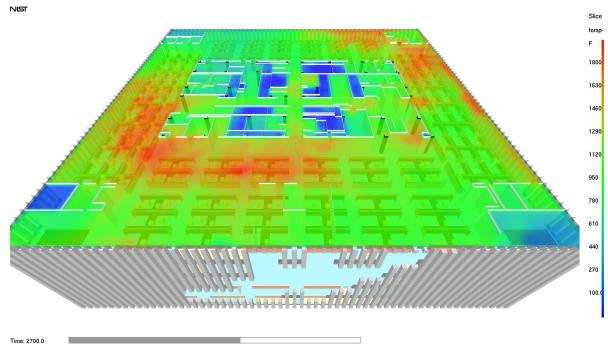
Thermal Analysis Simulations of heating and cooling of condensed phase materials.

Structural Analysis Calculation of displacements, stresses, and loss of capacity of load bearing structure.


FIRE DYNAMICS

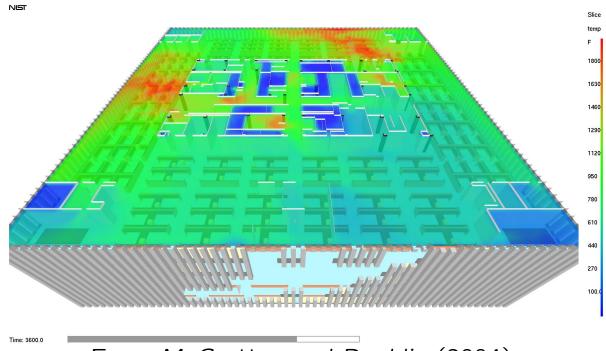
From McGrattan and Bouldin 2004

- All fire simulations performed with NIST Fire Dynamics Simulator (FDS).
- Geometry model as used by FDS based on architectural rather than structural features.
- Window breaking times and locations obtained from photographic and video data.


FIRE DYNAMICS (2)

From McGrattan and Bouldin (2004)

- Predicted temperatures and heat release rates compared with experiments.
- Experiments burned paper laden work stations in limited ventilation compartments.
- Actual contents and completeness of burning are sources of uncertainty.


FDS SIMULATIONS

From McGrattan and Bouldin (2004)

- North tower 96th floor ceiling temperatures at 15 minute intervals.
- At 50 cm resolution, 150,000 cells per floor and 500,000 time steps required for 6000 seconds simulated time.
- Parallel processing reduces computing time to 2 days (8 processors/floor). 6-12 GBytes memory required.

FDS SIMULATIONS (2)

From McGrattan and Bouldin (2004)

- Heating and cooling at any location as fires migrate.
- FDS time step 10^2-10^3 times smaller than thermal time scales. Allows simultaneous fire and thermal calculations if desired.
- Further details in (McGrattan and Bouldin 2004).