Direct Energy Conversion: Chemistry, Physics, Materials Science and Thermoelectrics

American Physical Society Meeting, Baltimore March 2006

Heat to Electrical Energy Directly

Up to 20% conversion efficiency with right materials

Electrical Power Generation

http://www.dts-generator.com/

Schock group

Thermoelectric applications

- Waste heat recovery
 - Automobiles
 - Over the road trucks
 - Utilities
 - Chemical plants
- Space power
- Remote Power Generation
- Solar energy
- Geothermal power generation
- Direct nuclear to electrical

PIONEER 10 and 11

U.S. Energy Flow, 1999

Given that ~60% of energy becomes waste heat, even a 10% capture and conversion to useful forms can have huge impact on overall energy utilization

How does it work?

http://www.designinsite.dk

 $\delta = R_c/R \qquad \begin{array}{l} \text{For } T_h = 800 \text{K} \\ T_c = 300 \text{K} \end{array}$

Today's situation

- The most efficient materials today for power generation: PbTe and TAGS (TeSbGeAg alloy)
- The most efficient material for cooling Bi₂Te₃
- PbTe: ZT~0.8 at 800 K (n-type)
- TAGS: ZT~1.2 700 K (p-type)
- Bi₂Te_{3-x}Se_x: ZT~1 at 300 K
- Further improvements are needed.
- New materials needed

 Quantum Dot Layers in thin MBE-grown PbSe/PbTe superlattices (Harman *et al*, ZT~3)

PbTe PbSe 20 nm dot

Some promising systems under investigation

- half-Heusler alloys (ZrNiSn)
- Zn₄Sb₃
- Clathrates
- Skutterudites (CoSb₃)
- Bulk nanocomposites based on PbTe
- Bulk nanocomposites based on Si-Ge
- AgSbTe₂/PbTe, NaSbTe₂/PbTe

See March 2006 issue of MRS Bulletin

ZT and Electronic Structure

Isotropic structure

Selection criteria for candidate materials

- Narrow band-gap semiconductors
- Heavy elements
 - High μ , low κ
- Large unit cell, complex structure
 - low *ĸ*
- Highly anisotropic or highly symmetric...
- Complex compositions
 - low κ , complex electronic structure

Chemistry as a source of materials

Investigating the System:

Our first contact with cubic $AgPb_mSbTe_{2+m}$

- AgBi₃S₅, KPbBi₉Se₁₃, KPb₄Sb₇Se₁₅
- CsPbBi₃Te₆, CsPb₂Bi₃Te₇, CsPb₃Bi₃Te₈,
- RbPbBi₃Te₆, RbPb₂Bi₃Te₇, RbPb₃Bi₃Te₈,
- KPbBiSe₃, K₂PbBi₂Se₅
- K₂Pb₃Bi₂Te₇, KPb₄SbTe₆

$AgPb_mSbTe_{2+m}(LAST-m)$ $AgPb_m(Sb,Bi)Te_{2+m}(BLAST-m)$

(1) (a) Rodot, H. *Compt. Rend.* **1959**, *249*, 1872-4.
(2) (a) Rosi, F. D.; Hockings, E. S.; Lindenblad, N. E. *Adv. Energy Convers.* **1961**, *1*, 151.

(LAST-18) Ag_{1-x}Pb₁₈SbTe₂₀: Tunable properties Changing x

Synthesis: Heating cooling profiles

rock

R. G. Maier Z. Metallkunde 1963, 311

Samples cooled slowly from liquid to solid

- Strongly varying composition from top to bottom.
- Strongly varying properties from top to bottom.
- "Sweet" spot exists with very high ZT.
- Mechanical properties weak.

Strong composition grading along ingot

Properties of Ag_{1-x}Pb₁₈SbTe₂₀

Ag_{1-x}Pb₁₈SbTe₂₀

Hsu KF, Loo S, Guo F, Chen W, Dyck JS, Uher C, Hogan T, Polychroniadis EK, Kanatzidis MG Science, 2004, 303, 818

What is the origin of the TE properties of AgPb_mSbTe_{m+2} systems?

HRTEM Coherently embedded nanocrystals

Polychroniadis, Frangis, 2004

LAST-18 κ_{latt} =1.2 W/m-K at 300 K PbTe κ_{latt} =2.2 W/m-K at 300 K

Coherent compositional fluctuations in $AgPb_mSbTe_{m+2}$

Ag, Sb, Pb ordering

Driving force for segregation Ag⁺/Sb³⁺ pair: stable

Pb Te Pb Te

Dissociated state..unstable

Associated state..stable

Any +1/+3 pair

T. Irie Jap. J. Appl. Phys. 1966, 5, 854

PRL 96, 045901 (2006)

PHYSICAL REVIEW LETTERS

Thermal Conductivity Reduction and Thermoelectric Figure of Merit Increase by Embedding Nanoparticles in Crystalline Semiconductors

Woochul Kim,¹ Joshua Zide,² Arthur Gossard,² Dmitri Klenov,² Susanne Stemmer,² Ali Shakouri,³ and Arun Majumdar^{1,4,*}

 ¹Department of Mechanical Engineering, University of California, Berkeley, California 94720, USA
 ²Department of Materials, University of California, Santa Barbara, California 93106, USA
 ³Department of Electrical Engineering, University of California, Santa Cruz, California 95064, USA
 ⁴Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA (Received 13 September 2005; published 2 February 2006)

Atomic substitution in alloys can efficiently scatter phonons, thereby reducing the thermal conductivity in crystalline solids to the "alloy limit." Using $In_{0.53}Ga_{0.47}As$ containing ErAs nanoparticles, we demonstrate thermal conductivity reduction by almost a factor of 2 below the alloy limit and a corresponding increase in the thermoelectric figure of merit by a factor of 2. A theoretical model suggests that while point defects in alloys efficiently scatter short-wavelength phonons, the ErAs nanoparticles provide an additional scattering mechanism for the mid-to-long-wavelength phonons.

DOI: 10.1103/PhysRevLett.96.045901

PACS numbers: 65.40.-b, 63.22.+m, 65.80.+n, 66.60.+a

P-type materials, LASTT

- (LASTT-m) Ag(Pb_{1-x}Sn_x)_mSbTe_{2+m}
- Sn atoms act as acceptors
- Ag atoms act as acceptors
- Sb atoms act as donors
- e.g AgPb₁₀Sn₈SbTe₂₀, Ag_xPb₇Sn₃Sb_yTe₁₂, Very low lattice thermal conductivity
- Good homogeneity

LASTT-16

Very low lattice thermal conductivity

$\kappa_{\text{latt}} = 0.5 \text{ W/m} \cdot \text{K} \text{ at } 650 \text{ K}$

Androulakis, Hsu, Hogan, Uher, Kanatzidis Advanced Mater. 2006, in press

LASTT-16: $AgPb_{12}Sn_4Sb_{0.4}Te_{20}$

Androulakis, Hsu, Hogan, Uher, Kanatzidis Advanced Mater. 2006, in press

Figure of Merit LASTT (p-type)

Androulakis, Hsu, Hogan, Uher, Kanatzidis Advanced Mater. 2006, in press

NaPb₂₀SbTe₂₂ (SALT-20)

Poudeu, Hogan, Kanatzidis Angew. Chemie, 2006,

SALT-20

Poudeu, Hogan, Kanatzidis Angew. Chemie, 2006,

State of the art - bulk

Conclusions

- New approaches are succeeding in raising ZT
- The (A₂Q)_n(PbQ)_m(Bi₂Q₃)_p (Q=Se, Te) system is a rich source of new materials
- Several new promising compounds identified
 - strongly anisotropic
 - cubic
 - nanostructured
- LAST, LASTT and SALT family of materials
 - nanostructured
 - superior ZT
- Strong thermal conductivity reduction achieved through nanostructuring
- Doping studies and processing conditions are important in ZT optimization

Outlook

- Further progress is expected on the TE figure of merit
- Fundamental challenge:
 - Translate current theoretical physical predictions on how to enhance Power Factor (σ ·S²) into actual chemistry in the laboratory
 - Achieve minimum thermal conductivity (~0.3 W/mK) in a bulk (nano)crystalline TE material
- Research in new materials should focus on
 - Understanding and controlling carrier scattering
 - Controlling nanostructuring to manipulate phonon propagation
 - Discovering new compounds
- Long term: Waste heat recovery and conversion could be impacted on a massive scale with low cost materials if ZT>2-3.
- Thermoelectrics could help utilize existing depletable energy resources more effectively
- Thermoelectrics could also play role in renewable energy (e.g. solar, etc)

Collaborators

- Tim Hogan, Dept of Electrical Engineering, MSU
- S. D. (Bhanu) Mahanti, Dept. of Physics, MSU
- Ctirad Uher, Dept. of Physics, U of Michigan
- Simon Billinge, Physics, MSU
- Eldon Case, MSU
- Harold Schock, MSU
- Bruce Cook, Iowa State
- Terry Tritt, Clemson U
- Art Schultz, Argonne NL

TE Research group

- Dr Duck young Chung
- Joseph Sootsman
- Dr Kuei fang Hsu
- Dr Eric Quarez
- Aurelie Guegen
- Ferdinand Poudeu
- Jun-Ho Kim
- Dr John Androulakis

