Rare Decays and New Physics at the B-Factories

Mark Convery SLAC April 17, 2007

April 2007 Meeting of the American Physical Society

Jacksonville, Florida

1

on behalf of the BaBar Collaboration

The Role of Rare Decays

CKM Physics

- Measurement of CKM at Bfactories is achieved by
 - Time-dependent CPV
 - Tree-level b->c (beta)
 - Tree-level b->u (alpha)

 b->s,d gluon transitions form "pollution". No expectation of finding NP in BF's

Rare Decays

- Searching for NP in electroweak b->s,d (FCNC) transitions requires firm SM prediction
 - Exclusive modes may not be suitable. Use inclusive to avoid uncertainties
 - Or, use angular or direct-CP asymmetries
- Alternatively look for processes that are highly suppressed in SM
 - Leptonic B-decays
 - Lepton Flavor Violation in tau decay
 - Invisible Upsilon Decays

17 April 07

<u>Outline</u>

- PEP-II and BaBar
- Electroweak Penguin B Decays
 - b→sγ
 - Β→ργ
 - B→K*l⁺l⁻
 - B→πl⁺l⁻
- Leptonic B Decays
 - $B^+ \rightarrow \tau^+ \nu$
 - $\quad \mathsf{B}^{\scriptscriptstyle +} {\rightarrow} \mathsf{I}^{\scriptscriptstyle +} \nu(\mathsf{I} {=} \mu, e)$
- Lepton Flavor Violation in τ decays
 - $\tau^+ \rightarrow l^+ \gamma$
 - τ⁺→l⁺l⁺l^{-,} l⁺h⁺h⁻
 - $-\tau^+ \rightarrow l^+ h^0(\pi^0,\eta,\eta')$
- Invisible Upsilon Decay

17 April 07

Rare Decays and New Physics

3

PEP-II 01/24/2007 04:26 400 BaBar Recorded Luminosity: 390.55/b Asymmetric storage rings operating near $\Upsilon(4s)$ Integrated L 220 resonance Off Peak Luminosity: 37.43/fb Peak luminosity 1.21×10³⁴ Delivered Luminosity
 Recorded Luminosity Off Peak $cm^{2}/s = 12 nb^{-1}/s = 1 fb^{-1}/day$ 200 Produces B's in flight with 150 <|Δz|> = 250 μm 100 50 effective σ (nb) Process e+e-→bb 1.1 2002 2000 200 2003 2004 2005 2005 1.3 e+e- →cc Anticipated total luminosity of • $e+e- \rightarrow qq (q=u,d,s)$ ~2.1 900 fb⁻¹ by Summer '08 $e\text{+}e\text{-}\rightarrow \tau^{+}\tau^{-}$ 0.9 17 April 07 Rare Decays and New Physics 4

<u>BaBar</u>

- 5-layer Silicon Vertex
 Detector
- 40-layer Drift Chamber for p_t and dE/dx
- Fused Silica Cherenkov Detector for charged particle PID
- CsI (TI) calorimeter for neutral reconstruction
- Instrumented flux return for muon and K_{L} ID

- Over 390 fb⁻¹ of data collected
- Recently completed
 upgrade of IFR

17 April 07

Rare Decays and New Physics

Flavor Changing Neutral Currents

- Within the SM, FCNC's occur through "electroweak penguins"
- Final state contains photon, or lepton pair

SM

5

• Beyond SM, many different particles may potentially contribute

How to disentangle non-SM contribution from SM one?

Inclusive b→sy SM Theory

- $BF(B \rightarrow X_s \gamma) = BF(b \rightarrow s \gamma)$, to few% non-perturbative corrections
- In the SM, BF(b \rightarrow s γ) can be precisely calculated
- · But, must first understand QCD effects on SM BF

<u>Inclusive b→sγ Analysis</u>

- BF(b→sγ) extremely important due to theoretical cleanliness
- For a measurement with similar (5%) precision
 - Avoid s-quark fragmentation by only reconstructing the γ
 - Avoid model dependence by pushing E_γ threshold as low as possible

<u>BaBar Exclusive Tag $B^{\pm} \rightarrow I^{\pm} \nu$ Results</u>

- Based on 229x10⁶ BB pairs
- Use same tag as for B->tau v
- 0 signal events observed for both e⁺ and μ⁺ with expected background of 0.23 and 0.12
 - Limits obtained B(B⁺ $\rightarrow \mu^+ \nu$)< 6.2 x 10⁻⁶ B(B⁺ $\rightarrow e^+ \nu$)< 7.9 x 10⁻⁶

- Very clean experimentally since no systematic related to background
- · Limits should improve proportional to Luminosity
- · Not yet fully competitive with inclusive analysis

```
17 April 07
```

Rare Decays and New Physics

25

Lepton Flavor Violation in τ decays

Thrust. Axis Lepton Flavor conservation is not associated with any τ Signal hemisphere known symmetry e⁻ Can arise naturally and at accessible levels in BSM models v_{τ} Large samples of τ 's at Bfactories Neutrinoless τ decays can be completed reconstructed Variables analogous to m_{ES} $\tilde{\chi}^0$ and ΔE can be used

sphere

27

Rare Decays and New Physics

17 April 07

$\underline{\tau}^{\pm} \rightarrow \underline{I}^{\pm} \underline{I}^{\pm} \underline{I}^{\pm} and \underline{\tau}^{\pm} \rightarrow \underline{I}^{\pm} \underline{h}^{\pm} \underline{$

- Search for all permutations of $\tau^+ \rightarrow |l^+|l^-$ ($l = \mu$ or e)
 - BaBar analysis based on 91 fb⁻¹ find B<(1-3)x10⁻⁷ PRL 91:121801 (2004)
 - Belle analysis based on 87 fb⁻¹ finds limits in the range (2-4)x10⁻⁷ PLB 589, 103(2004)

17 April 07

Search for all permutations of $\tau^+ \rightarrow l^+h^+h^-$ (h= π or K)

- BaBar analysis based on 224 fb⁻¹ find B<(1-5)x10⁻⁷ PRL 95:191801 (2005)
- Belle analysis based on 158 fb⁻¹ finds limits in the range (2-8)x10⁻⁷ PLB 640, 138 (2006)

29

Rare Decays and New Physics

- New BaBar results using 339 fb^{-1.} Limits in the range (1.1-2.6)x10⁻⁷ PRL 98, 061803(2007)
- Belle results using 401 fb⁻¹ find limits in the range (0.7-1.6)x10⁻⁷ PLB 640, 138 (2006)
- Belle also searches for $\tau^+ \rightarrow l^+ K_s$ using 281 fb⁻¹PLB 639, 159 (2006)

Interpretation of $\tau^{+} \rightarrow \mu^{+}\eta$ in a SUSY seesaw model* (right-handed neutrino mass of 10¹⁴ Gev/c²

*M.Sher, PRD 057301 (2002)

Conclusions and Outlook

- Rare decays of "low mass" particles continue to provide tight constraints on "high mass" New Physics
 - In many cases these are better, or complementary to those found in direct searches
- The queen of these decays b→sγ is an "acid test" for any new model
- In the era of the LHC, rare decays may help us learn the detailed nature of the New Physics that will be found

Shape Functions in $b \rightarrow s\gamma$

- "Two body b decay" b→sγ is perfect for studying shape functions
- Connection between measurements and shape functions is through moments of Eγ distribution
- For BF measurement, must extrapolate below Eγ>1.9 GeV using shape function

17 April 07

"Sum of Exclusive" Overview

- Sum of 38 exclusive modes
 - K⁽⁰⁾+≤4π
 - − $K^{(0)}$ +η+≤2π
 - 3K⁽⁰⁾+≤1π
- Background reduced with π^0 and η vetoes
- Event shape variables used to reduce continuum background
- Fit to m_{ES} distribution in bins of M(X_s)
- Uses JETSET to model X_s fragmentation

Final States	Data/Monte Carlo
$\frac{1}{K^{-}\pi^{+}}$ $\frac{K^{0}}{K^{-}}\pi^{-}$	0.50 ± 0.07
$K^{-}\pi^{0}, K^{0}_{S}\pi^{0}$	0.19 ± 0.12
$K^{-}\pi^{+}\pi^{-}, K^{0}_{S}\pi^{+}\pi^{-}$	1.02 ± 0.14
$K^{-}\pi^{+}\pi^{0}, K^{0}_{s}\pi^{-}\pi^{0}$	1.34 ± 0.24
$K^{-}\pi^{+}\pi^{-}\pi^{+}, K^{0}_{S}\pi^{+}\pi^{-}\pi^{-}$	2.67 ± 0.96
$K^-\pi^+\pi^-\pi^0,\ K^0_S\ \pi^+\pi^-\pi^0$	1.29 ± 0.61
$\frac{K^{-}\pi^{0}\pi^{0}, K^{0}_{S}\pi^{0}\pi^{0}}{K^{-}\pi^{+}\pi^{0}\pi^{0}, K^{0}_{S}\pi^{-}\pi^{0}\pi^{0}}$	1.89 ± 1.33
$ \begin{array}{c} K^-\pi^+\pi^-\pi^+\pi^-, K^0_S \; \pi^+\pi^-\pi^+\pi^- \\ K^-\pi^+\pi^-\pi^+\pi^0, K^0_S \; \pi^+\pi^-\pi^-\pi^0 \\ K^-\pi^+\pi^-\pi^0\pi^0, K^0_S \; \pi^+\pi^-\pi^0\pi^0 \end{array} $	$1.32^{+1.55}_{-1.32}$
$ \begin{split} & K^-\eta, K^0_S \eta, K^-\eta \pi^+ \\ & K^0_S \eta \pi^-, K^-\eta \pi^0, K^0_S \eta \pi^0 \\ & K^-\eta \pi^+\pi^-, K^0_S \eta \pi^+\pi^- \\ & K^-\eta \pi^+\pi^0, K^0_S \eta \pi^-\pi^0 \end{split} $	$0.83\substack{+1.00 \\ -0.83}$
$ \begin{array}{c} K^-K^+K^-, K^-K^+K^0_S \\ K^-K^+K^-\pi^+, K^-K^+K^0_S \pi^-, \\ K^-K^+K^-\pi^0, K^-K^+K^0_S \pi^0 \end{array} $	$0.27\substack{+0.54 \\ -0.27}$

"Sum of Exclusive" Efficiency

"Sum of Exclusive" b→sγ Fitting

- Fits to m_{ES} in bins of $M(X_s)$
- Peaking background subtracted in each bin
- Example at right si for 1.4<M(X_s)<1.5. Other bins are similar

17 April 07

"Sum of Exclusive" Results

BF(E_{γ}>1.9 GeV) = (3.27±0.18 $^{+0.55}_{-0.40}$ $^{+0.04}_{-0.09}$ ×10⁻⁴ Extrapolated to BF(E γ >1.6) = (3.35±0.19 - 0.09 $\times 10^{-4}$ $\Delta_{0-} = 0.006 \pm 0.058 \pm 0.009 \pm 0.024$ PRD 72, 052004 E_{γ} Moments $E\gamma$ >1.9 GeV (2005)- First moment = $2.321\pm0.038_{-0.038}^{+0.017}$ GeV - Second moment = $0.0253\pm0.0101^{+0.0041}_{-0.0028}$ GeV² x10⁻³ x10⁻³ 0.20 0.05 0.15 0.04 0.03 0.10 0.02 0.05 -0.01 0 С -0.01 -0.05 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 1.4 1.6 1.8 2.0 2.2 2.4 0.8 1.0 1.2 2.6 2.8 0.6 E_v (GeV) M(X_S) (GeV) 17 April 07 Rare Decays and New Physics 39

Fully Inclusive b→sy Overview

- Require E_γ*>1.9. Lowest possible E_γ cut is preferred to minimize model dependence
- Veto π⁰ and η backgrounds
- Dramatically reduce continuum background with opposite-side lepton tag and event shape variables
- Subtract continuum background with off-peak data

Fully Inclusive $b \rightarrow s\gamma$ Details

