APS Meeting

April 14-17, 2007

CP Violation and CKM Physics at the B Factories

(for Belle & BaBar Collaborations)

Elements of the Cabibbo-Kobayashi-Maskawa matrix describe transitions between up and down quarks

CPV & CKM Physics at B-Factories

Alexey Garmash

rmash •

CKM & CPV Around The World

Major experiments, ongoing or recently ended

CPV & CKM Physics at B-Factories

Asymmetric-Energy B Factories

$e^+e^- => Y(4S) => B\overline{B}$

- $@ 2M_B ≈ M_{Y(4S)} \implies B$ mesons are (almost) at rest in the Y(4S) rest frame.
- Must be able to measure time difference between B and B decays (distance between B and \overline{B} decay vertices).
 - asymmetric energy collisions good vertex detector
- @ Must be able to distinguish between B and B decays (flavor tag) good particle identification capability
- The goal is to measure asymmetry in decays of B and B mesons (~10%) with reasonable accuracy (~10%). The relevant BF~10⁻⁶ with reconstruction efficiency of $\sim 20\%$
 - $\sim 10^8$ of B mesons required

CPV & CKM Physics at B-Factories

Alexey Garmash

Belle Detector

CPV & CKM Physics at B-Factories

Alexey Garmash

•

Belle Vertex Detector

CPV & CKM Physics at B-Factories

Alexey Garmash

April 14-17, 2007

Particle Identification: BaBar

Particle Identification: Belle

B Factories

CPV & CKM Physics at B-Factories

Alexey Garmash

•

•

CPV & CKM Physics at B-Factories

Alexey Garmash

•

• April 14-17, 2007

$|V_{cb}|$

Inclusive/Exclusive semileptonic B decays: $B \rightarrow X_c lv$

CPV & CKM Physics at B-Factories

Alexey Garmash

V_{cb}: Summary

٠

•

In principle, simple measurement of rate $\propto |V_{ub}|^2$

✤ But huge rate of semileptonic b→c

Inclusive $B \rightarrow X_u I^+ v_I$

Use high momentum lepton ("endpoint"), X_u mass (or both)

- Need to correct for missing parts of spectra
- Exclusive $B^{0/+} \rightarrow \pi^{-/0} I^+ v_I$
 - Orrect B⁺ decays for lifetime difference
 - ↔ Need to include form factor f⁺(q²=m_{Iv}²) for B→π transition

Inclusive

BLNP: Lange, Neubert, Paz (2005) DGE: Anderson, Gardi (2006) LLR: Leibovich, Low, Rothstein (2006)

Room for some experimental statistical improvement

CPV & CKM Physics at B-Factories

•

V_{ub} Exclusive

Experiments starting to measure form factor shape from data; allows elimination of some theory models

CPV & CKM Physics at B-Factories

• A

CPV & CKM Physics at B-Factories

Alexey Garmash

$$\Delta m_s = 17.77 \pm 0.10 \text{ (stat.)} \pm 0.07 \text{ (syst.)} \text{ ps}^{-1}$$

 $\left| \frac{V_{td}}{V_{ts}} \right| = 0.2060 \pm 0.0007 \text{ (exp.)}^{+0.0081}_{-0.0060} \text{ (theo.)}$ CDF (2006)
CKM Physics at B-Factories • Alexey Garmash • April 14-17, 2007 19

CPV & CKM Physics at B-Factories

Alexey Garmash

CPV Results

CPV & CKM Physics at B-Factories

Alexey Garmash

•

• April 14-17, 2007

CPV & CKM Physics at B-Factories

•

•

Time-dependent CP violation (tCPV)

Golden mode: $B^0 \rightarrow J/\psi K$; high rate, theoretically clean

Note: true for any B⁰ decay with no phase from decay amplitude

CPV & CKM Physics at B-Factories

Time-dependent CP violation

- 1. Fully reconstruct one B-meson which decays to CP eigenstate f_{CP}
- 2. <u>Tag-side determines its flavor (effective efficiency = 30%)</u>
- 3. Proper time (Δt) is measured from decay-vertex difference (Δz)

CPV & CKM Physics at B-Factories

Alexey Garmash

Time-dependent CP violation

CPV & CKM Physics at B-Factories

Alexey Garmash

b→ccs

CPV & CKM Physics at B-Factories

Alexey Garmash

β: b→sqā

In general, new physics contains new sources of flavor mixing and CP violation.

▶ In SUSY models, for example, SUSY particles contribute to the $b \rightarrow s$ transition, and their CP phases change CPV observed in $B \rightarrow \phi K$, $\eta' K$ etc.

β: b→sqą

Even in the SM slight shift in sin2 β measured in b \rightarrow s dominated decays is expected due to

- b \rightarrow u tree contamination
- Im(V_{ts}) \neq 0 at O(λ^4)
- final state rescattering

Short distance effect

QCDF: Beneke, PLB 620, 143 (2005)

Cheng, Chua, Yang, PRD 73, 014017 (2006) pQCD:

Mishima, Sanda, PRD 72, 114005 (2005) SCET:

Williamson, Zupan, PRD 74, 014003 (2006)

Long distance effect (is small)

Cheng, Chua, Soni, PRD 72, 014006 (2005)

$$\lambda = \frac{q}{p} \frac{\overline{A}}{A} = e^{-i2\beta} e^{-i2\gamma} = e^{i2\alpha}$$

$$S = \sin(2\alpha)$$

$$C = 0$$

$$If$$
Penguin
pollution
$$S = \sqrt{1 - C^2} \sin(2\alpha_{eff})$$

$$C \propto \sin \delta$$

CPV & CKM Physics at B-Factories

Alexey Garmash

• April 14-17, 2007

α : **B** \rightarrow $\pi\pi$

 α : $B \rightarrow \pi\pi$

No useful constraint is obtained with $\pi\pi$ system alone \rightarrow need $\rho\rho$ and $\rho\pi$

•

 $\alpha: \mathbf{B} \rightarrow \rho \pi \rightarrow \pi \pi \pi$

three-pion final state: dominated by transitions through ρ mesons

interfering contributions from $\rho^{+}\pi^{-}$, $\pi^{+}\rho^{-}$ (and $\rho^{0}\pi^{0}$)

Snyder-Quinn method: time-dependent Dalitz analysis

BELLE prelim. (449M BB) – hep-ex/0609003 BABAR prelim. (347M BB) – hep-ex/0608002

CPV & CKM Physics at B-Factories

Alexey Garmash

α: Β→ρρ

CPV & CKM Physics at B-Factories

CPV & CKM Physics at B-Factories

•

•

γ : Method

 r_B

Interference between two tree level amplitudes

$$\begin{aligned} & = A(b \to u)/A(b \to c) \\ & \approx 0.39 f_c \sim 0.1 - 0.3 \end{aligned}$$

GWL (Gronau-Wyler-London): $f_{COM} - CP$ eigenstates $(\pi^+\pi^-, K^0\pi^0, K^+K^-, ...)$ ADS (Atwood-Dunietz-Soni): $f_{COM} - flavor specific (K^+\pi^-, K^+\pi^-\pi^+\pi^-, ...)$ GGSZ (Giri-Grossman-Soffer-Zupan): $f_{COM} - multibody (K^0\pi^+\pi^-, K^+K^-\pi^+\pi^-, ...)$ CPV & CKM Physics at B-FactoriesAlexey GarmashApril 14-17, 2007

Y: GWL & ADS

★ Gronau-Wyler-London (GWL)

$B \rightarrow D_{CP} K$

- small interference
- sensitivity to γ
- no sensitivity to $r_{\rm B}$

BABAR (232M BB) - PR D73, 051105 (2006)

★ Atwood-Dunietz-Soni (ADS)

- larger interference
- unknown D relative strong phase
- sensitivity to $r_{\rm B}$

$$R_{K\pi} = \frac{Br(D^{O}[K^{+}\pi^{-}]K^{-} + c.c.)}{Br(D^{O}[K^{-}\pi^{+}]K^{-} + c.c.)} \sim r_{B}^{2}$$

no observation yet – set limits $r_B^2 < 0.23 (90\% C.L)$

BABAR (232M BB) - PR D72, 032004 (2005)

٠

CPV & CKM Physics at B-Factories

GGSZ

★ Giri-Grossman-Soffer-Zupan (GGSZ)

- exploit interference pattern in Dalitz plot
- sensitivity to both γ and $r_{_{\rm B}}$
- · a two-fold ambiguity remains in the

extraction of γ

schematic view of the interference

3 modes combined: CPV significance: 78% $\gamma = 53^{+15}_{-18} \pm 3(syst) \pm 9(model)^{\circ}$ 8° < γ < 111° (2 σ interval)

٠

 $\begin{array}{ll} \mathsf{DK:} & \mathsf{r}_{\mathsf{B}} = 0.159^{+0.054} \underset{-0.050}{\bullet} \pm 0.012(\mathsf{syst}) \pm 0.049(\mathsf{model}); & \delta = (146^{+19} \underset{-20}{\bullet})^{\mathsf{o}} \\ \mathsf{D*K:} & \mathsf{r}_{\mathsf{B}} = 0.175^{+0.108} \underset{-0.099}{\bullet} \pm 0.013(\mathsf{syst}) \pm 0.049(\mathsf{model}); & \delta = (302^{+34} \underset{-35}{\bullet})^{\mathsf{o}} \\ \mathsf{DK*:} & \mathsf{r}_{\mathsf{B}} = 0.564^{+0.216} \underset{-0.155}{\bullet} \pm 0.041(\mathsf{syst}) \pm 0.084(\mathsf{model}); & \delta = (243^{+20} \underset{-23}{\bullet})^{\mathsf{o}} \end{array} \right.$

•

γ: Summary

CPV & CKM Physics at B-Factories

٠

•

UT: Global Fit (2006)

Good overall agreement. O(1) new physics unlikely. Need to be able to detect O(0.1) effects as the next step.

CPV & CKM Physics at B-Factories

- Alex
- Alexey Garmash

nash 🛛 🔸

April 14-17, 2007

Prospects for The Future

- BaBar and Belle only half way
 - Both aiming for around 1ab⁻¹ each over next two years
- V_{ub} is mainly theory limited
 - Some experimental improvements possible
 - Theory error can be reduced but with substantial work

•

More data also brings new techniques and decay modes
 Improvements better than
 N can be expected