Applications of AdS/CFT to QCD

Changes in physical length scale mapped to evolution in the 5th dimension z

in collaboration with Guy de Teramond

AdS/CFT: Anti-de Sitter Space / Conformal Field Theory

Maldacena:

Map $A d S_{5} \times S_{5}$ to conformal $N=4$ SUSY

- QCD is not conformal; however, it has manifestations of a scale-invariant theory: Bjorken scaling, dimensional counting for hard exclusive processes
- Conformal window: $\quad \alpha_{s}\left(Q^{2}\right) \simeq$ const at small Q^{2}
- Use mathematical mapping of the conformal group $\mathbf{S O}_{(4,2)}$ to AdS5 space

Conformal window Infrared fixed-point

伞 lattice: Furui, Nakajima (MILC)

- - - - DSE: Alkofer, Fischer, von Smekal et al.

APS Jacksonville April 16, 2007

AdS/QCD

Stan Brodsky, SLAC

IR Fixed-Point for QCD?

- Dyson-Schwinger Analysis: QCD Coupling has IR Fixed Point Alkofer, Fischer, von Smekal et al.
- Evidence from Lattice Gauge Theory Furui, Nakajima
- Define coupling from observable: indications of IR fixed point for QCD effective charges
- Confined or massive gluons: Decoupling of QCD vacuum polarization at small $\mathbf{Q}^{\mathbf{2}}$

$$
\Pi\left(Q^{2}\right) \rightarrow \frac{\alpha}{15 \pi} \frac{Q^{2}}{m^{2}} \quad Q^{2} \ll 4 m^{2}
$$

- Justifies application of AdS/CFT in strong-coupling ${ }^{-}$ conformal window

Constituent Counting Rules

$$
n_{t o t}=n_{A}+n_{B}+n_{C}+n_{D}
$$

Fixed t / s or $\cos \theta_{c m}$

$$
\begin{aligned}
& \frac{d \sigma}{d t}(s, t)=\frac{F\left(\theta_{\mathrm{cm}}\right)}{s^{\left[n_{\mathrm{tot}}-2\right]} \quad s=E_{\mathrm{cm}}^{2}} \\
& F_{H}\left(Q^{2}\right) \sim\left[\frac{1}{Q^{2}}\right]^{n_{H}-1}
\end{aligned}
$$

Farrar \& sjb; Matveev, Muradyan, Tavkhelidze

Conformal symmetry and PQCD predict leading-twist scaling behavior of fixed-CM angle exclusive amplitudes

Characteristic scale of QCD: 300 MeV
Many new J-PARC, GSI, J-Lab, Belle, Babar tests

Leading-Twist PQCD Factorization for form factors, exclusive amplitudes

Lepage, sjb

baryon distribution amplitude

$$
M=\int \Pi d x_{i} d y_{i} \phi_{F}\left(x_{i}, \widetilde{Q}\right) \times T_{H}\left(x_{i}, y_{i}, \widetilde{Q}\right) \times \phi_{I}\left(y_{i}, \widetilde{Q}\right)
$$

If $\alpha_{s}\left(\widetilde{Q}^{2}\right) \simeq$ constant
$Q^{4} F_{1}\left(Q^{2}\right) \simeq$ constant

Features of Hard Exclusive Processes in PQCD

- Factorization of perturbative hard scattering subprocess amplitude and nonperturbative distribution amplitudes

$$
M=\int T_{H} \times \Pi \phi_{i}
$$

- Dimensional counting rules reflect conformal invariance: $M \sim \frac{f\left(\theta_{C M}\right)}{Q^{N_{\text {tot }}-4}}$
- Hadron helicity conservation: $\sum_{\text {initial }} \lambda_{i}^{H}=\sum_{\text {final }} \lambda_{j}^{H}$
- Color transparency Mueller, sjb;
- Hidden color Ji, Lepage, sjb;
- Evolution of Distribution Amplitudes Lepage, sjb; Efremov, Radyushkin

Conformal behavior: $Q^{2} F_{\pi}\left(Q^{2}\right) \rightarrow$ const

Determination of the Charged Pion Form Factor at Q2=1.60 and $2.45(\mathrm{GeV} / \mathrm{c}) 2$.
By Fpi2 Collaboration (T. Horn et al.). Jul 2006. 4pp. e-Print Archive: nucl-ex/0607005
G. Huber

$Q^{4} F_{1}\left(Q^{2}\right) \rightarrow$ const

Generalized parton distributions from nucleon form-factor data. M. Diehl (DESY), Th. Feldmann (CERN), R. Jakob, P. Kroll (Wuppertal U.) .

DESY-04-146, CERN-PH-04-154, WUB-04-08, Aug 2004. 68pp.
Published in Eur.Phys.J.C39:1-39,2005
e-Print Archive: hep-ph/0408173

Test of PQCD Scaling

constituent counting rules

Conformat invariance

Quark-Counting: $\frac{d \sigma}{d t}(p p \rightarrow p p)=\frac{F\left(\theta_{C M}\right)}{s^{10}} \quad n=4 \times 3-2=10$

Deuteron Photodisintegration,

Why do dimensional counting

 rules work so well?- PQCD predicts \log corrections from powers of α_{s}, logs, pinch contributions Lepage, sjb; Efremov, Radyushkin; Landshoff; Mueller, Duncan
- DSE: QCD coupling (mom scheme) has IR Fixed point Alkofer, Fischer, von Smekal et al.
- Lattice results show similar flat behavior Furui, Nakajima
- PQCD exclusive amplitudes dominated by integration regime where α_{s} is large and flat

Goal:

- Use AdS/CFT to provide an approximate, covariant, and analytic model of hadron structure with confinement at large distances, conformal behavior at short distances
- Analogous to the Schrodinger Equation for Atomic Physics
- AdS/QCD Holographíc Model

Conformal Theories are invariant under the Poincare and conformal transformations with

$$
\mathbf{M}^{\mu \nu}, \mathbf{P}^{\mu}, \mathbf{D}, \mathbf{K}^{\mu},
$$

the generators of $\operatorname{SO}(4,2)$

SO(4,2) has a mathematical representation on AdS5

AdS/QCD
 16

Stan Brodsky, SLAC

- Polchinski \& Strassler: AdS/CFT builds in conformal symmetry at short distances; counting rules for form factors and hard exclusive processes; non-perturbative derivation
- Goal: Use AdS/CFT to provide an approximate model of hadron structure with confinement at large distances, conformal behavior at short distances
- de Teramond, sjb: AdS/QCD Holographic Model: Initial "semiclassical" approximation to QCD. Predict light-quark hadron spectroscopy, form factors.
- Karch, Katz, Son, Stephanov: Linear Confinement
- Mapping of AdS amplitudes to $3+$ I Light-Front equations, wavefunctions
- Use AdS/CFT wavefunctions as expansion basis for diagonalizing $H^{\mathrm{LF}} \mathrm{QCD}$; variational methods

Scale Transformations

- Isomorphism of $S O(4,2)$ of conformal QCD with the group of isometries of AdS space

$$
d s^{2}=\frac{R^{2}}{z^{2}}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}-d z^{2}\right), \quad \text { invariant measure }
$$

$x^{\mu} \rightarrow \lambda x^{\mu}, z \rightarrow \lambda z$, maps scale transformations into the holographic coordinate z.

- AdS mode in z is the extension of the hadron wf into the fifth dimension.
- Different values of z correspond to different scales at which the hadron is examined.

$$
x^{2} \rightarrow \lambda^{2} x^{2}, \quad z \rightarrow \lambda z
$$

$x^{2}=x_{\mu} x^{\mu}$: invariant separation between quarks

- The AdS boundary at $z \rightarrow 0$ correspond to the $Q \rightarrow \infty$, UV zero separation limit.

AdS/CFT

- Use mapping of conformal group $\mathrm{SO}(4,2)$ to AdS_{5}
- Scale Transformations represented by wavefunction $\psi(z)$ in 5th dimension $\quad x_{\mu}^{2} \rightarrow \lambda^{2} x_{\mu}^{2} \quad z \rightarrow \lambda z$
- Holographic model: Confinement at large distances and conformal symmetry in interior $0<z<z_{0}$
- Match solutions at small z to conformal dimension of hadron wavefunction at short distances $\psi(z) \sim z^{\Delta}$ at $z \rightarrow 0$
- Truncated space simulates "bag" boundary conditions

$$
\psi\left(z_{0}\right)=0 \quad z_{0}=\frac{1}{\Lambda_{Q C D}}
$$

Identify hadron by its interpolating operator at z -- >o

$$
\Phi(z)=z^{3 / 2} \phi(z)
$$

AdS Schrodinger Equation for bound state of two scalar constituents

$$
\left[-\frac{\mathrm{d}^{2}}{\mathrm{dz}^{2}}+\mathbf{V}(\mathrm{z})\right] \phi(\mathrm{z})=\mathbf{M}^{2} \phi(\mathrm{z})
$$

Truncated space

$$
\mathbf{V}(\mathrm{z})=-\frac{1-4 \mathbf{L}^{2}}{4 \mathbf{z}^{2}} \quad \phi\left(\mathrm{z}=\mathrm{z}_{0}=\frac{1}{\Lambda_{\mathrm{c}}}\right)=0
$$

Alternative: Harmonic oscillator confinement

$$
\mathrm{V}(\mathrm{z})=-\frac{1-4 \mathrm{~L}^{2}}{4 \mathrm{z}^{2}}+\kappa^{4} \mathrm{z}^{2} \quad \text { Karch, et al. }
$$

Derived from variation of Action in AdS5

Match fall-off at small z to conformal twist dimension at short distances

- Pseudoscalar mesons: $\mathcal{O}_{3+L}=\bar{\psi} \gamma_{5} D_{\left\{\ell_{1} \ldots\right.} \ldots D_{\left.\ell_{m}\right\}} \psi \quad$ ($\Phi_{\mu}=0$ gauge).
- 4- d mass spectrum from boundary conditions on the normalizable string modes at $z=z_{0}$, $\Phi\left(x, z_{o}\right)=0$, given by the zeros of Bessel functions $\beta_{\alpha, k}: \mathcal{M}_{\alpha, k}=\beta_{\alpha, k} \Lambda_{Q C D}$
- Normalizable AdS modes $\Phi(z)$

Meson orbital and radial AdS modes for $\Lambda_{Q C D}=0.32 \mathrm{GeV}$.

Light meson orbital spectrum $\Lambda_{Q C D}=0.32 \mathrm{GeV}$
Guy de Teramond SJB

Baryon Spectrum

- Baryon: twist-three, dimension

$$
\frac{9}{2}+L
$$

$$
\mathcal{O}_{\frac{9}{2}+L}=\psi D_{\left\{\ell_{1}\right.} \ldots D_{\ell_{q}} \psi D_{\ell_{q+1}} \ldots D_{\left.\ell_{m}\right\}} \psi, \quad L=\sum_{i=1}^{m} \ell_{i} .
$$

Wave Equation : $\left[z^{2} \partial_{z}^{2}-3 z \partial_{z}+z^{2} \mathcal{M}^{2}-\mathcal{L}_{ \pm}^{2}+4\right] f_{ \pm}(z)=0$
with $\mathcal{L}_{+}=L+1, \mathcal{L}_{-}=L+2$, and solution

$$
\Psi(x, z)=C e^{-i P \cdot x} z^{2}\left[J_{1+L}(z \mathcal{M}) u_{+}(P)+J_{2+L}(z \mathcal{M}) u_{-}(P)\right]
$$

- 4- d mass spectrum $\Psi\left(x, z_{o}\right)^{ \pm}=0 \quad \Longrightarrow \quad$ parallel Regge trajectories for baryons !

$$
\mathcal{M}_{\alpha, k}^{+}=\beta_{\alpha, k} \Lambda_{Q C D}, \quad \mathcal{M}_{\alpha, k}^{-}=\beta_{\alpha+1, k} \Lambda_{Q C D}
$$

- Ratio of eigenvalues determined by the ratio of zeros of Bessel functions !

Prediction from AdS/QCD

Only one parameter!

Entire light quark baryon spectrum

Fig: Predictions for the light baryon orbital spectrum for $\Lambda_{Q C D}=0.25 \mathrm{GeV}$. The $\mathbf{5 6}$ trajectory corresponds to L even $P=+$ states, and the 70 to L odd $P=-$ states.

Guy de Teramond SJB

- $S U(6)$ multiplet structure for N and Δ orbital states, including internal spin S and L.

$S U(6)$	S	L	Baryon State
56	${ }^{\frac{1}{2}}$	0	$N^{\frac{1}{2}}{ }^{+}(939)$
	$\frac{3}{2}$	\bigcirc	$\Delta \frac{3}{2}^{+}(1232)$
70	$\frac{1}{2}$	1	$N^{\frac{1}{2}}{ }^{-}(1535) N^{\frac{3}{2}}{ }^{-}(1520)$
	$\frac{3}{2}$	1	$N \frac{1}{2}^{-}(1650) N^{\frac{3}{2}-}(1700) N \frac{5}{2}-(1675)$
	$\frac{1}{2}$	1	$\Delta \frac{1}{2}^{-}(1620) \Delta \frac{3}{2}^{-}(1700)$
56	$\frac{1}{2}$	2	$N{ }^{\frac{3}{2}+(1720)} N^{\frac{5}{2}}{ }^{+}(1680)$
	$\frac{3}{2}$	2	$\Delta \frac{1}{2}+(1910) \Delta \frac{3}{2}^{+}(1920) \Delta \frac{5}{2}^{+}(1905) \Delta \Delta^{+}{ }^{+}(1950)$
70	${ }^{\frac{1}{2}}$	3	$N^{\frac{5}{2}}{ }^{-} N^{\frac{7}{2}}{ }^{-}$
	$\frac{3}{2}$	3	$N{ }^{\frac{3}{2}}{ }^{-} N^{\frac{5}{2}}{ }^{-} N^{\frac{7}{2}}{ }^{-}(2190) N{ }^{\frac{9}{2}}{ }^{-}(2250)$
	$\frac{1}{2}$	3	$\Delta \frac{5}{2}{ }^{-}(1930) \Delta^{\frac{7}{2}}$
56	$\frac{1}{2}$	4	$N \frac{7^{+}}{}{ }^{+}{ }^{\frac{9}{2}}{ }^{+}(2220)$
	${ }^{\frac{3}{2}}$	4	$\Delta \frac{5}{2}^{+} \quad \Delta \frac{7}{2}^{+} \quad \Delta \frac{9}{2}{ }^{+} \quad \Delta \frac{11}{2}^{+}(2420)$
70	$\frac{1}{2}$	5	$\mathrm{Na}^{\frac{9}{-}}{ }^{\text {N }} \frac{11}{2}-$
	$\frac{3}{2}$	5	$N \mathrm{~T}^{-}{ }^{-} \quad N \frac{9}{2}^{-} \quad N \frac{11}{2}^{-}(2600) N{ }^{\frac{13}{2}}{ }^{-}$

Hadron Form Factors from AdS/CFT

- Propagation of external perturbation suppressed inside AdS. $J(Q, z)=z Q K_{1}(z Q)$
- At large Q^{2} the important integration region is $z \sim 1 / Q$.

$$
\begin{aligned}
& \mathbf{J}(\mathbf{Q}, \mathbf{z}), \mathbf{\Phi}(\mathbf{z}) \\
& F\left(Q^{2}\right)_{I \rightarrow F}=\int \frac{d z}{z^{3}} \Phi_{F}(z) J(Q, z) \Phi_{I}(z) \\
& \text { Polchinski, Strassler } \\
& \text { de Teramond, sjb }
\end{aligned}
$$

- Consider a specific AdS mode $\Phi^{(n)}$ dual to an n partonic Fock state $|n\rangle$. At small $z, \Phi^{(n)}$ scales as $\Phi^{(n)} \sim z^{\Delta_{n}}$. Thus:

$$
F\left(Q^{2}\right) \rightarrow\left[\frac{1}{Q^{2}}\right]^{\tau-1}, \quad \begin{gathered}
\text { Dimensional Quark Counting Rules: } \\
\text { General result from }
\end{gathered}
$$

where $\tau=\Delta_{n}-\sigma_{n}, \sigma_{n}=\sum_{i=1}^{n} \sigma_{i}$. The twist is equal to the number of partons, $\tau=n$.

$$
\begin{aligned}
& F\left(Q^{2}\right)=R^{3} \int_{0}^{\infty} \frac{d z}{z^{3}} \Phi_{P^{\prime}}(z) J(Q, z) \Phi_{P}(z) . \\
& \Phi(z)=\frac{\sqrt{2} \kappa}{R^{3 / 2}} z^{2} e^{-\kappa^{2} z^{2} / 2} . \quad J(Q, z)=z Q K_{1}(z Q) . \\
& F\left(Q^{2}\right)=1+\frac{Q^{2}}{4 \kappa^{2}} \exp \left(\frac{Q^{2}}{4 \kappa^{2}}\right) E i\left(-\frac{Q^{2}}{4 \kappa^{2}}\right) \quad E i(-x)=\int_{\infty}^{x} e^{-t} \frac{d t}{t} . \\
& \text { Space-likePion } \\
& \text { Identical Results for both } \\
& \text { confinement models } \\
& \Lambda_{\mathrm{QCD}}=0.2 \mathrm{GeV} . \\
& F\left(Q^{2}\right) \rightarrow \frac{4 \kappa^{2}}{Q^{2}} \\
& \kappa=2 \wedge_{\mathrm{QCD}}
\end{aligned}
$$

AdS/QCD

Spacelike and Timelike Pion form factor from AdS/CFT

G. de Teramond, sjb

Harmonic Oscillator Confinement scale set by pion decay constant

$$
\kappa=0.38 \mathrm{GeV}
$$

Stan Brodsky, SLAC

Baryon Form Factors

- Coupling of the extended AdS mode with an external gauge field $A^{\mu}(x, z)$

$$
i g_{5} \int d^{4} x d z \sqrt{g} A_{\mu}(x, z) \bar{\Psi}(x, z) \gamma^{\mu} \Psi(x, z)
$$

where

$$
\begin{aligned}
& \Psi(x, z)=e^{-i P \cdot x}\left[\psi_{+}(z) u_{+}(P)+\psi_{-}(z) u_{-}(P)\right] \\
& \psi_{+}(z)=C z^{2} J_{1}(z M), \quad \psi_{-}(z)=C z^{2} J_{2}(z M)
\end{aligned}
$$

and

$$
\begin{gathered}
u(P)_{ \pm}=\frac{1 \pm \gamma_{5}}{2} u(P) \\
\psi_{+}(z) \equiv \psi^{\uparrow}(z), \quad \psi_{-}(z) \equiv \psi^{\downarrow}(z)
\end{gathered}
$$

the LC \pm spin projection along \hat{z}.

- Constant C determined by charge normalization:

$$
C=\frac{\sqrt{2} \Lambda_{\mathrm{QCD}}}{R^{3 / 2}\left[-J_{0}\left(\beta_{1,1}\right) J_{2}\left(\beta_{1,1}\right)\right]^{1 / 2}}
$$

Nucleon Form Factors

- Consider the spin non-flip form factors in the infinite wall approximation

$$
\begin{aligned}
& F_{+}\left(Q^{2}\right)=g_{+} R^{3} \int \frac{d z}{z^{3}} J(Q, z)\left|\psi_{+}(z)\right|^{2} \\
& F_{-}\left(Q^{2}\right)=g_{-} R^{3} \int \frac{d z}{z^{3}} J(Q, z)\left|\psi_{-}(z)\right|^{2}
\end{aligned}
$$

where the effective charges g_{+}and g_{-}are determined from the spin-flavor structure of the theory.

- Choose the struck quark to have $S^{z}=+1 / 2$. The two AdS solutions $\psi_{+}(z)$ and $\psi_{-}(z)$ correspond to nucleons with $J^{z}=+1 / 2$ and $-1 / 2$.
- For $S U(6)$ spin-flavor symmetry

$$
\begin{aligned}
F_{1}^{p}\left(Q^{2}\right) & =R^{3} \int \frac{d z}{z^{3}} J(Q, z)\left|\psi_{+}(z)\right|^{2} \\
F_{1}^{n}\left(Q^{2}\right) & =-\frac{1}{3} R^{3} \int \frac{d z}{z^{3}} J(Q, z)\left[\left|\psi_{+}(z)\right|^{2}-\left|\psi_{-}(z)\right|^{2}\right]
\end{aligned}
$$

where $F_{1}^{p}(0)=1, F_{1}^{n}(0)=0$.

- Large Q power scaling: $F_{1}\left(Q^{2}\right) \rightarrow\left[1 / Q^{2}\right]^{2}$.
G. de Teramond, sjb
G. de Teramond, sjb

Dirac Neutron Form Factor
(Valence Approximation)

$$
Q^{4} F_{1}^{n}\left(Q^{2}\right) \quad\left[\mathrm{GeV}^{4}\right]
$$

Prediction for $Q^{4} F_{1}^{n}\left(Q^{2}\right)$ for $\Lambda_{\mathrm{QCD}}=0.21 \mathrm{GeV}$ in the hard wall approximation. Data analysis from Diehl (2005).

Dírac'sAmazing Idea:
 The "Front Form"

Light-Front Wavefunctions

$$
P^{+}=P^{0}+P^{z}
$$

Fixed $\tau=t+z / c$

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right) \quad \sum_{i}^{n} x_{i}=1
$$

Invariant under boosts! Independent of P^{μ}

$$
\sum_{i}^{n} \vec{k}_{\perp i}=\overrightarrow{0}_{\perp}
$$

36
Stan Brodsky, SLAC

Light-Front Wavefunctions

Dirac's Front Form: Fixed $\tau=t+z / c$

$$
\psi\left(x, k_{\perp}\right) \quad \underset{\substack{x_{i}=\frac{k^{+}}{p+}}}{ }
$$

Invariant under boosts. Independent of P^{μ}

$$
\mathrm{H}_{L F}^{Q C D}\left|\psi>=M^{2}\right| \psi>
$$

Remarkable new insights from AdS/CFT, the duality between conformal field theory and Anti-de Sitter Space

Light-Front Wavefunctions

 Dirac's Front Form: Fixed $\tau=t+z / c$$$
\begin{aligned}
& \psi_{\mathrm{n}}\left(x, k_{\perp}\right)_{x_{x}=\frac{k^{+}}{p+}} \\
& \mathrm{H}_{L F}^{Q C D}\left|\psi>=M^{2}\right| \psi>
\end{aligned}
$$

Intrinsic gluons, sea quarks, asymmetries

Angular Momentum on the Light-Front $\mathbf{A}^{+}=\mathbf{o}$ gauge: \quad No unphysical degrees of freedom
$J^{z}=\sum_{i=1}^{n} s_{i}^{z}+\sum_{j=1}^{n-1} l_{j}^{z}$.
Conserved
LF Fock state by Fock State

$$
l_{j}^{z}=-\mathrm{i}\left(k_{j}^{1} \frac{\partial}{\partial k_{j}^{2}}-k_{j}^{2} \frac{\partial}{\partial k_{j}^{1}}\right)
$$

n-ı orbital angular momenta

Nonzero Anomalous Moment requires
Nonzero orbital angular momentum.

$$
\begin{aligned}
& \frac{F_{2}\left(q^{2}\right)}{2 M}=\sum_{a} \int[\mathrm{~d} x]\left[\mathrm{d}^{2} \mathbf{k}_{\perp}\right] \sum_{j} e_{j} \frac{1}{2} \times \\
& \text { Drell, sjb } \\
& {\left[-\frac{1}{q^{L}} \psi_{a}^{\uparrow *}\left(x_{i}, \mathbf{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{a}^{\downarrow}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right)+\frac{1}{q^{R}} \psi_{a}^{\downarrow *}\left(x_{i}, \mathbf{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{a}^{\uparrow}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right)\right]} \\
& \mathbf{k}_{\perp i}^{\prime}=\mathbf{k}_{\perp i}-x_{i} \mathbf{q}_{\perp} \\
& \mathbf{k}_{\perp j}^{\prime}=\mathbf{k}_{\perp j}+\left(1-x_{j}\right) \mathbf{q}_{\perp}
\end{aligned}
$$

Must have $\Delta \ell_{z}= \pm 1$ to have nonzero $F_{2}\left(q^{2}\right)$

Light-Front Representation of Meson Form Factor

- Drell-Yan-West form factor

$$
F\left(q^{2}\right)=\sum_{q} e_{q} \int_{0}^{1} d x \int \frac{d^{2} \vec{k}_{\perp}}{16 \pi^{3}} \psi_{P^{\prime}}^{*}\left(x, \vec{k}_{\perp}-x \vec{q}_{\perp}\right) \psi_{P}\left(x, \vec{k}_{\perp}\right)
$$

- Fourrier transform to impact parameter space \vec{b}_{\perp}

$$
\psi\left(x, \vec{k}_{\perp}\right)=\sqrt{4 \pi} \int d^{2} \vec{b}_{\perp} e^{i \vec{b}_{\perp} \cdot \vec{k}_{\perp}} \widetilde{\psi}\left(x, \vec{b}_{\perp}\right)
$$

- Find $\left(b=\left|\vec{b}_{\perp}\right|\right)$:

$$
\begin{aligned}
F\left(q^{2}\right) & =\int_{0}^{1} d x \int d^{2} \vec{b}_{\perp} e^{i x \vec{b}_{\perp} \cdot \vec{q}_{\perp}}|\widetilde{\psi}(x, b)|^{2} \\
& =2 \pi \int_{0}^{1} d x \int_{0}^{\infty} b d b J_{0}(b q x)|\widetilde{\psi}(x, b)|^{2}
\end{aligned}
$$

Identical DYW and AdS5 Formulae: Two parton case

- Change the integration variable $\zeta=\left|\vec{b}_{\perp}\right| \sqrt{x(1-x)}$

$$
F\left(Q^{2}\right)=2 \pi \int_{0}^{1} \frac{d x}{x(1-x)} \int_{0}^{\zeta_{\max }=\Lambda_{\mathrm{QCD}}^{-1}} \zeta d \zeta J_{0}\left(\frac{\zeta Q x}{\sqrt{x(1-x)}}\right)|\widetilde{\psi}(x, \zeta)|^{2}
$$

- Compare with AdS form factor for arbitrary Q. Find:

$$
J(Q, \zeta)=\int_{0}^{1} d x J_{0}\left(\frac{\zeta Q x}{\sqrt{x(1-x)}}\right)=\zeta Q K_{1}(\zeta Q)
$$

Same result for
LF and AdS5

$$
\zeta \leftrightarrow \mathrm{z}
$$

the solution for the electromagnetic potential in AdS space, and

$$
\widetilde{\psi}\left(x, \vec{b}_{\perp}\right)=\frac{\Lambda_{\mathrm{QCD}}}{\sqrt{\pi} J_{1}\left(\beta_{0,1}\right)} \sqrt{x(1-x)} J_{0}\left(\sqrt{x(1-x)}\left|\vec{b}_{\perp}\right| \beta_{0,1} \Lambda_{Q C D}\right) \theta\left(\vec{b}_{\perp}^{2} \leq \frac{\Lambda_{\mathrm{QCD}}^{-2}}{x(1-x)}\right)
$$

the holographic LFWF for the valence Fock state of the pion $\psi_{\bar{q} q / \pi}$.

- The variable $\zeta, 0 \leq \zeta \leq \Lambda_{Q C D}^{-1}$, represents the scale of the invariant separation between quarks and is also the holographic coordinate $\zeta=z$!

$$
\xrightarrow{L F(3+1)} \begin{gathered}
A d S_{5} \\
\psi\left(x, \vec{b}_{\perp}\right)
\end{gathered}
$$

Holography: Unique mapping derived from equality of LF and AdS formula for current matrix elements

> Holography: Map AdS/CFT to $3+1$ LF Theory

Relativistic radial equation:

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+V(\zeta)\right] \phi(\zeta)=\mathcal{M}^{2} \phi(\zeta)
$$

$$
\zeta^{2}=x(1-x) \mathbf{b}_{\perp}^{2}
$$

Effective conformal potential:

$$
V(\zeta)=-\frac{1-4 L^{2}}{4 \zeta^{2}}
$$

Map AdS/CFT to 3+1 LF Theory

Effective radial equation:

$$
\begin{aligned}
{\left[-\frac{d^{2}}{d \zeta^{2}}+V(\zeta)\right] \phi(\zeta)=} & \mathcal{M}^{2} \phi(\zeta) \\
& \zeta^{2}=x(1-x) \mathbf{b}_{\perp}^{2}
\end{aligned}
$$

Effective conformal potential:

$$
V(\zeta)=-\frac{1-4 L^{2}}{4 \zeta^{2}}
$$

General solution:

$$
\begin{gathered}
\widetilde{\psi}_{L, k}\left(x, \vec{b}_{\perp}\right)=B_{L, k} \sqrt{x(1-x)} \\
\left.J_{L}(\sqrt{x(1-x})\left|\vec{b}_{\perp}\right| \beta_{L, k} \Lambda_{\mathrm{QCD}}\right) \theta\left(\vec{b}_{\perp}^{2} \leq \frac{\Lambda_{\mathrm{QCD}}^{-2}}{x(1-x)}\right)
\end{gathered}
$$

AdS/CFT Predictions for Meson LFWF $\psi\left(x, b_{\perp}\right)$

Truncated Space
Harmonic Oscillator

AdS/CFT Prediction for Meson LFWF

Two-parton holographic LFWF in impact space $\widetilde{\psi}(x, \zeta)$ for $\Lambda_{Q C D}=0.32 \mathrm{GeV}$: (a) ground state $L=0, k=1$; (b) first orbital exited state $L=1, k=1$; (c) first radial exited state $L=0, k=2$. The variable ζ is the holographic variable $z=\zeta=\left|b_{\perp}\right| \sqrt{x(1-x)}$.

$$
\widetilde{\psi}(x, \zeta)=\frac{\Lambda_{\mathrm{QCD}}}{\sqrt{\pi} J_{1}\left(\beta_{0,1}\right)} \sqrt{x(1-x)} J_{0}\left(\zeta \beta_{0,1} \Lambda_{Q C D}\right) \theta\left(z \leq \Lambda_{\mathrm{QCD}}^{-1}\right)
$$

- Define effective single particle transverse density by (Soper, Phys. Rev. D 15, 1141 (1977))

$$
F\left(q^{2}\right)=\int_{0}^{1} d x \int d^{2} \vec{\eta}_{\perp} e^{i \vec{\eta}_{\perp} \cdot \vec{q}_{\perp}} \tilde{\rho}\left(x, \vec{\eta}_{\perp}\right)
$$

- From DYW expression for the FF in transverse position space:

$$
\tilde{\rho}\left(x, \vec{\eta}_{\perp}\right)=\sum_{n} \prod_{j=1}^{n-1} \int d x_{j} d^{2} \vec{b}_{\perp j} \delta\left(1-x-\sum_{j=1}^{n-1} x_{j}\right) \delta^{(2)}\left(\sum_{j=1}^{n-1} x_{j} \vec{b}_{\perp j}-\vec{\eta}_{\perp}\right)\left|\psi_{n}\left(x_{j}, \vec{b}_{\perp j}\right)\right|^{2}
$$

- Compare with the the form factor in AdS space for arbitrary Q :

$$
F\left(Q^{2}\right)=R^{3} \int_{0}^{\infty} \frac{d z}{z^{3}} e^{3 A(z)} \Phi_{P^{\prime}}(z) J(Q, z) \Phi_{P}(z)
$$

- Holographic variable z is expressed in terms of the average transverse separation distance of the spectator constituents $\vec{\eta}=\sum_{j=1}^{n-1} x_{j} \vec{b}_{\perp j}$

$$
z=\sqrt{\frac{x}{1-x}}\left|\sum_{j=1}^{n-1} x_{j} \vec{b}_{\perp j}\right|
$$

Hadronization at the Amplitude Level

Event amplitude generator

Construct helicity amplitude using Light-Front Perturbation theory; coalesce quarks via LFWFs

Diffractive Dissociation of Pion into Quark Jets

E791 Ashery et al.

$$
M \propto \frac{\partial^{2}}{\partial^{2} k_{\perp}} \psi_{\pi}\left(x, k_{\perp}\right)
$$

Measure Light-Front Wavefunction of Pion
Minimal momentum transfer to nucleus Nucleus left Intact!

Key Ingredients in E791 Experiment

Brodsky Mueller Frankfurt Miller Strikman

Small color-dipole moment pion not absorbed; interacts with each nucleon coherently QCD COLOR Transparency

Color Transparency

Bertsch, Gunion, Goldhaber, sjb
A. H. Mueller, sjb

- Fundamental test of gauge theory in hadron physics
- Small color dipole moments interact weakly in nuclei
- Complete coherence at high energies
- Clear Demonstration of CT from Diffractive Di-Jets

Measure pion LFWF in diffractive dijet production Confirmation of color transparency

```
A-Dependence results:
                                ~
kt range (Gev/c)
1.25< kt < 1.5
1.5< k
1.52 士 0.122
2.0< k}<<<2.
\alpha (1ncon.) = 0.70 士0.1
```

Conventionat Glauber Theory Ruled Out Factor of 7
$!$

Key Ingredients in Ashery Experiment

Gunion, Frankfurt, Mueller, Strikman, sjb
Frankfurt, Miller, Strikman
Two-gluon exchange measures the second derivative of the pion light-front wavefunction

E791 Diffractive Di-Jet transverse momentum distribution

Narrowing of x distribution at higher jet transverse momentum
\mathbf{X} distribution of diffractive dijets from the platinum target for $1.25 \leq k_{t} \leq 1.5 \mathrm{GeV} / c$ (left) and for $1.5 \leq k_{t} \leq 2.5 \mathrm{GeV} / c$ (right). The solid line is a fit to a combination of the asymptotic and CZ distribution amplitudes. The dashed line shows the contribution from the asymptotic function and the dotted line that of the CZ function.

Possibly two components:
 Nonperturbative (AdS/CFT) and
 Perturbative (ERBL)
 Evolution to asymptotic distribution
 APS Jacksonville
 April 16, 2007
 AdS/QCD

Stan Brodsky, SLAC

Space-time picture of DVCS P. Hoyer

$$
\sigma=\frac{1}{2} x^{-} P^{+}
$$

The position of the struck quark differs by x^{-}in the two wave functions
Measure \mathbf{x}^{-}distribution from DVCS:
Take Fourier transform of skewness,

$$
\zeta=\frac{Q^{2}}{2 p \cdot q}
$$

S. J. Brodsky ${ }^{a}$, D. Chakrabarti ${ }^{b}$, A. Harindranath ${ }^{c}$, A. Mukherjee ${ }^{d}$, J. P. Vary ${ }^{e, a, f}$

S. J. Brodsky ${ }^{a}$, D. Chakrabarti ${ }^{b}$, A. Harindranath ${ }^{c}$, A. Mukherjee ${ }^{d}$, J. P. Vary $^{e, a, f}$

Hadron Optics

$A\left(\sigma, b_{\perp}\right)=\frac{1}{2 \pi} \int d \zeta e^{i \sigma \zeta} \widetilde{A}\left(b_{\perp}, \zeta\right)$
$\sigma=\frac{1}{2} x^{-} P^{+}$

$$
\zeta=\frac{Q^{2}}{2 p \cdot q}
$$

DVCS Amplitude using holographic QCD meson LFWF

$$
\wedge_{Q C D}=0.32
$$

$$
\left|b_{\perp}\right|
$$ tude in σ space for different fixed values of $\left|b_{\perp}\right|$.

GeV units

Stan Brodsky, SLAC

Hadron Dynamics at the Amplitude Level

- LFWFS are the universal hadronic amplitudes which underlie structure functions, GPDs, exclusive processes.
- Relation of spin, momentum, and other distributions to physics of the hadron itself.
- Connections between observables, orbital angular momentum
- Role of FSI and ISIs--Sivers effect

Features of Light-Front Formalism

- Hidden Color Nuclear Wavefunction
- Color Transparency, Opaqueness
- Intrinsic glue, sea quarks, intrinsic charm
- Simple proof of Factorization theorems for hard processes (Lepage, sjb)
- Direct mapping to AdS/CFT (de Teramond, sjb)
- New Effective LF Equations (de Teramond, sjb)
- Light-Front Amplitude Generator

AdS/CFT and Integrability

- Conformal Symmetry plus Confinement: Reduce AdS/QCD Equations to Linear Form
- Generate eigenvalues and eigenfunctions using Ladder Operators
- Apply to Covariant Light-Front Radial Dirac and Schrodinger Equations
- L. Infeld, "On a new treatment of some eigenvalue problems", Phys. Rev. 59, 737 (1941).

AdS/CFT LF Equationfor Mesons with HO Confinement

$$
\nu=L
$$

$\left(\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 \nu^{2}}{4 \zeta^{2}}-\kappa^{4} \zeta^{2}-2 \kappa^{2}(\nu+1)+\mathcal{M}^{2}\right) \phi_{\nu}(\zeta)=0$

LF Hamiltonian

$H_{L F}^{\nu} \phi_{\nu}=\mathcal{M}_{\nu}^{2} \phi_{\nu} \quad$ Bilinear $\quad H_{L F}^{\nu}=\Pi_{\nu}^{\dagger} \Pi_{\nu}$, where

$$
\Pi_{\nu}(\zeta)=-i\left(\frac{d}{d \zeta}-\frac{\nu+\frac{1}{2}}{\zeta}-\kappa^{2} \zeta\right)
$$

and its adjoint

$$
\Pi_{\nu}^{\dagger}(\zeta)=-i\left(\frac{d}{d \zeta}+\frac{\nu+\frac{1}{2}}{\zeta}+\kappa^{2} \zeta\right)
$$

de Teramond, sjb
with commutation relations

$$
\left[\Pi_{\nu}(\zeta), \Pi_{\nu}^{\dagger}(\zeta)\right]=\frac{2 \nu+1}{\zeta^{2}}-2 \kappa^{2}
$$

AdS/CFT LF Equationfor Mesons with HO Confinement

$$
\left(\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 \nu^{2}}{4 \zeta^{2}}-\kappa^{4} \zeta^{2}-2 \kappa^{2}(\nu+1)+\mathcal{M}^{2}\right) \phi_{\nu}(\zeta)=0
$$

Define

$$
\begin{gathered}
b_{\nu}^{\dagger}=-i \Pi_{\nu}=\frac{d}{d \zeta}+\frac{\nu+\frac{1}{2}}{\zeta}+\kappa^{2} \zeta \\
b_{\nu}=\frac{d}{d \zeta}+\frac{\nu+\frac{1}{2}}{\zeta}+\kappa^{2} \zeta \quad \quad b_{\nu}^{\dagger} b_{\nu}=b_{\nu+1} b_{\nu+1}^{\dagger}
\end{gathered}
$$

Ladder Operator $\quad b_{\nu}^{\dagger}|\nu\rangle=c_{\nu}|\nu+1\rangle$

$$
\left(-\frac{d}{d \zeta}+\frac{\nu+\frac{1}{2}}{\zeta}+\kappa^{2} \zeta\right) \phi_{\nu}(\zeta)=c_{\nu} \phi_{\nu+1}(\zeta)
$$

$$
\begin{gathered}
\phi_{\nu}(z)=C z^{1 / 2+\nu} e^{-\kappa^{2} \zeta^{2} / 2} G_{\nu}(\zeta) \\
2 x G_{\nu}(x)-G^{\prime}(x)=x G_{\nu+1}(x)
\end{gathered}
$$

defines the associated Laguerre function $L_{n}^{\nu+1}\left(x^{2}\right)$

$$
\phi_{\nu}(z)=C_{\nu} z^{1 / 2+\nu} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{\nu}\left(\kappa^{2} \zeta^{2}\right)
$$

Subtract Vacuum

$$
\mathcal{M}^{2} \rightarrow \mathcal{M}^{2}-2 \kappa^{2}
$$

Energy

$$
\mathcal{M}^{2}=4 \kappa^{2}\left(n+\nu+\frac{1}{2}\right)
$$

$J=L+1$ vector meson Regge trajectory for $\kappa \simeq 0.54 \mathrm{GeV}$

New Perspectives for QCD from AdS/CFT

- LFWFs: Fundamental frame-independent description of hadrons at amplitude level
- Holographic Model from AdS/CFT : Confinement at large distances and conformal behavior at short distances
- Model for LFWFs, meson and baryon spectra: many applications!
- New basis for diagonalizing Light-Front Hamiltonian
- Physics similar to MIT bag model, but covariant. No problem with support $\mathrm{o}<\mathrm{x}<\mathrm{I}$.
- Quark Interchange dominant force at short distances

CIM: Blankenbecler, Gunion, sjb

AdS/CFT explains why quark interchange is dominant
interaction at high momentum transfer in exclusive reactions
$M(t, u)_{\text {interchange }} \propto \frac{1}{u t^{2}}$

Non-linear Regge behavior:

$$
\alpha_{R}(t) \rightarrow-1
$$

Why is quark-interchange dominant over gluon exchange?

Example: $M\left(K^{+} p \rightarrow K^{+} p\right) \propto \frac{1}{u t^{2}}$
Exchange of common u quark
$M_{Q I M}=\int d^{2} k_{\perp} d x \psi_{C}^{\dagger} \psi_{D}^{\dagger} \Delta \psi_{A} \psi_{B}$
Holographic model (Classical level):

Hadrons enter 5th dimension of $A d S_{5}$
Quarks travel freely within cavity as long as
separation $z<z_{0}=\frac{1}{\Lambda_{Q C D}}$
LFWFs obey conformal symmetry producing quark counting rules.

Comparison of Exclusive Reactions at Large \boldsymbol{t}

B. R. Baller, ${ }^{(a)}$ G. C. Blazey, ${ }^{(b)}$ H. Courant, K. J. Heller, S. Heppelmann, ${ }^{(c)}$ M. L. Marshak,
E. A. Peterson, M. A. Shupe, and D. S. Wahl ${ }^{(d)}$

University of Minnesota, Minneapolis, Minnesota 55455
D. S. Barton, G. Bunce, A. S. Carroll, and Y. I. Makdisi

Brookhaven National Laboratory, Upton, New York 11973
and

S. Gushue ${ }^{(e)}$ and J. J. Russell

Southeastern Massachusetts University, North Dartmouth, Massachusetts 02747
(Received 28 October 1987; revised manuscript received 3 February 1988)

Cross sections or upper limits are reported for twelve meson-baryon and two baryon-baryon reactions for an incident momentum of $9.9 \mathrm{GeV} / c$, near 90° c.m.: $\pi^{ \pm} p \rightarrow p \pi^{ \pm}, p \rho^{ \pm}, \pi^{+} \Delta^{ \pm}, K^{+} \Sigma{ }^{ \pm},\left(\Lambda^{0} / \Sigma^{0}\right) K^{0}$; $K^{ \pm} p \rightarrow p K^{ \pm} ; p^{ \pm} p \rightarrow p p^{ \pm}$. By studying the flavor dependence of the different reactions, we have been able to isolate the quark-interchange mechanism as dominant over gluon exchange and quark-antiquark annihilation.

$$
\begin{aligned}
& \pi^{ \pm} p \rightarrow p \pi^{ \pm} \\
& K^{ \pm} p \rightarrow p K^{ \pm} \\
& \pi^{ \pm} p \rightarrow p \rho^{ \pm} \\
& \pi^{ \pm} p \rightarrow \pi^{+} \Delta^{ \pm} \\
& \pi^{ \pm} p \rightarrow K^{+} \Sigma^{ \pm} \\
& \pi^{-} p \rightarrow \Lambda^{0} K^{0}, \Sigma^{0} K^{0} \\
& p^{ \pm} p \rightarrow p p^{ \pm}
\end{aligned}
$$

Use AdS/CFT orthonormal LFWFs as a basis for diagonatizing the QCD LF Hamiltonian

- Good initial approximant
- Better than plane wave basis

Pauli, Hornbostel, Hiller, McCartor, sjb

- DLCQ discretization -- highly successful $\mathbf{I + 1}$
- Use independent HO LFWFs, remove CM motion

Vary, Harinandrath, sjb

- Similar to Shell Model calculations

Light-Front QCD

Heisenberg Equation

$$
H_{L C}^{Q C D}\left|\Psi_{h}\right\rangle=\mathcal{M}_{h}^{2}\left|\Psi_{h}\right\rangle
$$

DLCQ

| String Theory |
| :--- | :--- | :--- |

AdS/QCD

- New initial approximation to QCD based on conformal invariance, and confinement
- Underlying principle: Conformal Window
- AdS5: Mathematical representation of conformal gauge theory
- Systematically improve using DLCQ
- Successes: Hadron spectra, LFWFs, dynamics
- QCD at the Amplitude Level

AdS/CFT and QCD

Bottom-Up Approach

- Nonperturbative derivation of dimensional counting rules of hard exclusive glueball scattering for gauge theories with mass gap dual to string theories in warped space:
Polchinski and Strassler, hep-th/0109174.
- Deep inelastic structure functions at small x :

Polchinski and Strassler, hep-th/0209211.

- Derivation of power falloff of hadronic light-front Fock wave functions, including orbital angular momentum, matching short distance behavior with string modes at AdS boundary: Brodsky and de Téramond, hep-th/0310227. E. van Beveren et al.
- Low lying hadron spectra, chiral symmetry breaking and hadron couplings in AdS/QCD:

Boschi-Filho and Braga, hep-th/0212207; de Téramond and Brodsky, hep-th/0501022; Erlich, Katz, Son and Stephanov, hep-ph/0501128; Hong, Yong and Strassler, hep-th/0501197; Da Rold and Pomarol, hep-ph/0501218; Hirn and Sanz, hep-ph/0507049; Boschi-Filho, Braga and Carrion, arXiv:hepth/0507063; Katz, Lewandowski and Schwartz, arXiv:hep-ph/0510388.

- Gluonium spectrum (top-bottom):

Csaki, Ooguri, Oz and Terning, hep-th/9806021; de Mello Kock, Jevicki, Mihailescu and Nuñez, hep-th/9806125; Csaki, Oz, Russo and Terning, hep-th/9810186; Minahan, hep-th/9811156; Brower, Mathur and Tan, hep-th/0003115, Caceres and Nuñez, hep-th/0506051.

- D3/D7 branes (top-bottom):

Karch and Katz, hep-th/0205236; Karch, Katz and Weiner, hep-th/0211107; Kruczenski, Mateos, Myers and Winters, hep-th/0311270; Sakai and Sonnenschein, hep-th/0305049; Babington, Erdmenger, Evans, Guralnik and Kirsch, hep-th/0312263; Nuñez, Paredes and Ramallo, hep-th/0311201; Hong, Yoon and Strassler, hep-th/0312071; hep-th/0409118; Kruczenski, Pando Zayas, Sonnenschein and Vaman, hep-th/0410035; Sakai and Sugimoto, hep-th/0412141; Paredes and Talavera, hep-th/0412260; Kirsh and Vaman, hep-th/0505164; Apreda, Erdmenger and Evans, hep-th/0509219; Casero, Paredes and Sonnenschein, hep-th/0510110.

- Other aspects of high energy scattering in warped spaces:

Giddings, hep-th/0203004; Andreev and Siegel, hep-th/0410131; Siopsis, hep-th/0503245.

- Strongly coupled quark-gluon plasma ($\eta / s=1 / 4 \pi$):

Policastro, Son and Starinets, hep-th/0104066; Kang and Nastase, hep-th/0410173 ...

Thanks to my collaborators, especially

- Glennys Farrar
- G. Peter Lepage
- Richard Blankenbecler
- Jack Gunion
- Al Mueller
- Chris Pauli
- Guy de Teramond
- Paul Hoyer
- Sid Drell
- Chueng Ji
- Dae Sung Hwang
- John Hiller
- Ivan Schmidt
- Kent Hornbostel

A Theory of Everything Takes Place

String theorists have broken an impasse and may be on their way to converting this mathematical structure -- physicists' best hope for unifying gravity and quantum theory -- into a single coherent theory.

Frank and Ernest

Copyright (c) 1994 by Thaves. Distributed from www.thecomics.com.

Stan Brodsky, SLAC

