Search for the Neutrino Mixing Angle θ_{13}

with non-accelerator experiments

Karsten Heeger

University of Wisconsin

APS April Meeting, Jacksonville, Florida

Discovery Era in Neutrino Physics: 1998 - Present

Karsten Heeger, Univ. of Wisconsin

APS April Meeting, Jacksonville, April 16, 2007

Constraints on Neutrino Mixing Angles from Solar, Atmospheric, And Reactor Experiments

Neutrino Mixing

U_{MNSP} Matrix Maki, Nakagawa, Sakata, Pontecorvo

 $U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \begin{pmatrix} 0.8 & 0.5 & U_{e3} \\ 0.4 & 0.6 & 0.7 \\ 0.4 & 0.6 & 0.7 \end{pmatrix}$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \times \begin{pmatrix} \cos \theta_{13} & 0 & e^{-i\delta_{CP}} \sin \theta_{13} \\ 0 & 1 & 0 \\ -e^{i\delta_{CP}} \sin \theta_{13} & 0 & \cos \theta_{13} \end{pmatrix} \times \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha/2} & 0 \\ 0 & 0 & e^{i\alpha/2+i\beta} \end{pmatrix}$$

atmospheric, K2K reactor and accelerator SNO, solar SK, KamLAND $0v\beta\beta$
 $\theta_{23} = \sim 45^{\circ}$ $\theta_{13} = ?$ $\theta_{12} \sim 32^{\circ}$

Karsten Heeger, Univ. of Wisconsin APS April Meeting, Jacksonville, April 16, 200

 $\sin^2 \theta_{13}$

Neutrino Oscillation Search with Reactor Antineutrinos

Experiment & Theory

Global Fit

Theory

Model(s)	Refs.	$\sin^2 2\theta_{13}$
Minimal SO(10)	[22]	0.13
Orbifold SO(10)	[23]	0.04
SO(10) + Flavor symmetry	[24]	$1.2 \cdot 10^{-6}$
	[25]	$7.8 \cdot 10^{-4}$
	[26-28]	0.01 0.04
	[29-31]	0.09 0.18
SO(10) + Texture	[32]	$4 \cdot 10^{-4} 0.01$
	[33]	0.04
$SU(2)_L \times SU(2)_R \times SU(4)_c$	[34]	0.09
Flavor symmetries	[35–37]	0
	[38-40]	$\lesssim 0.004$
	[41-43]	10^{-4} 0.02
	[40, 44-47]	0.04 0.15
Textures	[48]	$4 \cdot 10^{-4} 0.01$
	[49-52]	0.03 0.15
3×2 see-saw	[53]	0.04
	[54] (n.h.)	0.02
	(i.h.)	$> 1.6 \cdot 10^{-4}$
Anarchy	[55]	> 0.04
Renormalization group enhancement	[56]	0.03 0.04
M-Theory model	[57]	10^{-4}

we don t know 13...

Ref: FNAL proton driver report, hep-ex/0509019

April Meeting, Jacksonville, April 16, 2007

Is there $\mu - \tau$ symmetry Can we in neutrino mixing?

Can we use v to search for \mathcal{P} ?

θ_{13} and Nuclear Astrophysics

neutrino oscillation effects on supernova light-element synthesis

understanding the origin of matter (vs antimatter)

Leptogenesis

Fukugita, Yanagida, 1986

• Out-of-equilibrium L-violating decays of heavy Majorana neutrinos leading to L asymmetry but leaving B unchanged. B_L-L_L is conserved.

Measuring $\theta_{\rm 13}$

- appearance experiment $v_{\mu} \rightarrow v_{e}$
- measurement of $\nu_{\mu} \rightarrow \nu_{e}$ and $\nu_{\mu} \rightarrow \nu_{e}$ yields θ_{13}, δ_{CP}
- baseline O(100 -1000 km), matter effects present

Method 2: Reactor Neutrino Oscillation Experiment

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v}\right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E_v}\right)$$

absorber

detector

decay pipe

 μ^+

 π^+

 π^+

target horn

- disappearance experiment $v_e \rightarrow v_e$
- look for rate deviations from 1/r² and spectral distortions
- observation of oscillation signature with 2 or multiple detectors
- baseline O(1 km), no matter effects

θ_{13} from Reactor and Accelerator Experiments

reactor (\overline{v}_{e} disappearance) $P_{ee} \approx 1 - \sin^{2} 2\theta_{13} \sin^{2} \left(\frac{\Delta m_{31}^{2} L}{4E_{v}}\right) - \cos^{4} \theta_{13} \sin^{2} 2\theta_{12} \sin^{2} \left(\frac{\Delta m_{21}^{2} L}{4E_{v}}\right)$

- Clean measurement of $\theta_{\rm 13}$

accelerator (v_e appearance)

- No matter effects

mass hierarchy

CP violation

matter

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) &= 4c_{13}^{2}s_{13}^{2}s_{23}^{2}\sin^{2}\Delta_{31} \\ &+ 8c_{13}^{2}s_{13}s_{23}c_{23}s_{12}c_{12}\sin\Delta_{31}\left[\cos\Delta_{32}\cos\delta\right] \sin\Delta_{32}\sin\Delta_{32}\sin\Delta_{31}\sin\Delta_{21} \\ &- 8c_{13}^{2}s_{13}^{2}s_{23}^{2}s_{12}^{2}\cos\Delta_{32}\sin\Delta_{31}\sin\Delta_{21} \\ &+ 4c_{13}^{2}s_{12}^{2}\left[c_{12}^{2}c_{23}^{2} + s_{12}^{2}s_{23}^{2}s_{13}^{2} - 2c_{12}c_{23}s_{12}s_{23}s_{13}\cos\delta\right]\sin^{2}\Delta_{21} \\ &- 8c_{13}^{2}s_{13}^{2}s_{23}^{2}\left(1 - 2s_{13}^{2}\right)\left(\frac{aL}{4E_{\nu}}\sin\Delta_{31}\left[\cos\Delta_{32} - \frac{\sin\Delta_{31}}{\Delta_{31}}\right] \right]. \end{split}$$

- $\text{sin}^22\theta_{13}$ is missing key parameter for any measurement of $~\delta_{\text{CP}}$

Resolving the θ_{23} Parameter Ambiguity

exposure [Mt MW 107 s]

Oscillation Experiment, Christine Lewis

A High Precision Measurement of θ_{13} with Reactor Neutrinos

Search for θ_{13} in new oscillation experiment

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v} \right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E_v} \right)$$

Karsten Heeger, Univ. of Wisconsin

APS April Meeting, Jacksonville, April 16, 2007

Principle of Relative Measurement

Measure ratio of interaction rates in detector (+shape)

Concept of Reactor θ_{13} Experiment

- relative measurement between detectors at different distances
- cancel source (reactor) systematics
- \rightarrow need "identical detectors" at near and far site

Detectors will never be "identical" but we can understand, measure, and control Daya Bay baseline (target)

- \rightarrow <u>relative</u> target mass & composition to
- < 0.30% (0.10%)
- \rightarrow relative antineutrino detection efficiency to < 0.25% (0.15%)

... between pairs of detectors.

Original ideal, first proposed at Neutrino2000

Krasnoyarsk

- underground reactor
- detector locations determined by infrastructure

ex/0211(

 Target:
 46 t

 Rate:
 ~1.5 x 10⁶ ev/year

 S:B
 >>1

46 t ~20000 ev/year ~ 10:1 Reactor

Ref: Marteyamov et al, hep-ex/0211070

Ratio of Measured to Expected \overline{v}_e Flux

Expected precision in Daya Bay to reach $sin^22\theta_{13} < 0.01$

World of Proposed Reactor θ₁₃ Neutrino Experiments

Proposed and R&D.

Double Chooz

Daya Bay, China

Powerful v_e **Source:** Multiple reactor cores. (at present 4 units with 11.6 GW_{th}, in 2011 6 units with 17.4 GW_{th})

Shielding from Cosmic Rays: Up to 1000 mwe overburden nearby.

Adjacent to mountain.

http://dayawane.ihep.ac.cn/

pril 16, 2007

Daya Bay Site

Dava Bay CD-1 Review, April 10, 2007

Event Rates and Signal

Antineutrino Interaction Rates (events/day per 20 ton module)

Daya Bay near site 960 Ling Ao near site ~760 Far site 90

Prompt Energy Signal

Statistics comparable to single detector in far hall

Delayed Energy Signal

reconstructed neutron (delayed) capture energy spectrum

Design, R&D, and Prototyping for Daya Bay

Gd-LS R&D in US and China

Detector Prototypes at IHEP and in Hong Kong

Acrylic Vessel R&D

Detector-related Uncertainties

		Absolute measureme	Rela nt meas	tive surement	t
Source of uncertainty		Chooz	Daya Bay (relative)		
		(absolute)	Baseline	Goal	Goal w/Swapping
# protons		0.8	0.3	0.1	0.006
Detector	Energy cuts	0.8	0.2	0.1	0.1
Efficiency	Position cuts	0.32	0.0	0.0	0.0
	Time cuts	0.4	0.1	0.03	0.03
	H/Gd ratio	1.0	0.1	0.1	0.0
	n multiplicity	0.5	0.05	0.05	0.05
	Trigger	0	0.01	0.01	0.01
	Live time	0	< 0.01	<0.0 1	< 0.01
Total detector-related uncertainty		1.7%	0.38%	0.18%	0.12%

Baseline:currently achievable relative uncertainty without R&DGoal:expected relative uncertainty after R&D

for relative measurement between detectors at near and far sites

	Daya Bay site	Ling Ao site	Far site
Accidental/signal	<0.2%	<0.2%	<0.1%
Fast n / signal	0.1%	0.1%	0.1%
⁹ Li- ⁸ He / signal	0.3%	0.2%	0.2%

- B/S ~ same for near and far sites
- constrained by measurements to required precision
- input to sensitivity calculations (assume 100% uncertainty)

Daya Bay Sensitivity & Milestones

- Apr '07 completed DOE CD-1 review
- Jul '07 start civil construction
- Oct '08 delivery of Gd-LS to Daya Bay
- Aug-Dec '08 assembly of first detector pair
- May '09 start data taking at near site
- Mar '10 start data taking at near+far sites

→**U13.00005:** The Daya Bay Reactor Neutrino Experiment Mary Bishai

- Relative detector systematics: 0.38% (baseline)
- Backgrounds will be measured: < 0.2%

	Location	Thermal Power (GW)	Distances Near/Far (m)	Depth Near/Far (mwe)	Target Mass (tons)
Angra proposed	Brazil	4.1	300/1500	250/2000	500
Daya Bay construction start in 07	China	11.6 17.4 after 2010	360(500)/1750	260/910	80
Double-CHOOZ under construction	France	8.7	150/1067	60/300	10.2
RENO <i>R&D</i>	Korea	17.3	150/1500	230/675	20

* experiments that are underway

$sin^22\theta_{13}$ Sensitivity Limits

Ref: FNAL proton driver report, hep-ex/0509019

Neutrino Physics at Reactors

Past Experiments

Hanford Savannah River ILL, France Bugey, France Rovno, Russia Goesgen, Switzerland Krasnoyark, Russia Palo Verde Chooz, France Reactors in Japan Next step High-precision measurement of θ_{13}open door for CP violation searches

> 2002 Discovery of reactor antineutrino oscillation

1995 Nobel Prize to Fred Reines at UC Irvine

1980s & 1990s Reactor neutrino flux measurements in U.S. and Europe

1956 First observation of neutrinos

Tell me Gr3 / Shelden Lee Glashaw 14 May 2003