Neutral Kaon Physics at Fermilab

- Context Leading Up to late 70s
- Fermilab E617/E731/KTeV
- Concluding Thoughts
- A Perspective with a Little Distance

Not a comprehensive review!

Symmetries in Elementary Particle Physics

Edited by A. ZICHICHI

The programme of the school was greatly influenced by two remarkable discoveries: the Ω and the $K_2^0 \rightarrow \pi^+ \pi^-$. Both results encouraged a tremendous development in both theoretical and experimental work. At

CP Violation ca 1978

- 64 Discovery
- 67 CPV in early universe (Sakharov) Unconnected (like gravity)
- 71 FNAL K⁰ Program approved (not for CPV)
- 76 First calculation of ε' in KM (EGN) KM provided a connection!
- 79 FNAL (E617), BNL & later CERN began programs Seeking a new phenomenon: direct CPV Elaboration of the predictions Everyone learned about kaons in school
 < 20 experimentalists (today about 2000) No WBS!

The Unique Laboratory of the	
Neutral Kaons	
M_{K}	500 MeV
Δm	3.5 x 10 ⁻⁶ ev
E	7 x 10 ⁻⁹ ev
$M_{K^0} - M_{\overline{K}^0}$	< 3.5 x 10 ⁻¹⁰ ev
<i>E</i> ′	???

Covers 20 orders of magnitude in scale

Experiments simultaneously sensitive to strong, electromagnetic, weak, CP violating & gravity forces

Is CP Violation purely in particle/anti-particle mixing: $K^0 \Leftrightarrow \overline{K}^0$

$$\eta_{+-} = \eta_{00} = \varepsilon$$
 : "Superweak Model"

Or is there also a "direct" component:

Primary Features of the Fermilab Approach

- Use of Regenerator to make K_S
 - Provides crucial checks and by-products
- Double Beam
 - Side-by-side K_S and K_L beams
 - Many potential systematic effects (nearly) cancel
- Precision em calorimetry
 - Lead glass, CsI
- Detailed Monte Carlo simulations
 - Beam and detector
 - Collection of high statistics decay modes
- Blind Analysis

Double BeamRegenerator to provide K_S Tracking chambers $\pi^+\pi^-$ EM calorimeter $\pi^0\pi^0$

Measure $\frac{\rho}{\eta_{\pm}}, \frac{\rho}{\eta_{00}}$ Separately (later all 4 simultaneously)

$$\begin{cases} K_{\rm L} + \rho K_{\rm S} \\ K_{\rm L} \end{cases}$$
 $\pi^+ \pi^- \text{ or } \pi^0 \pi^0 \rho = 0.03$

Double Beam Regenerator to provide K_S Tracking chambers $\pi^+\pi^-$ EM calorimeter $\pi^0\pi^0$

Measure $\frac{\rho}{\eta_{\pm}}, \frac{\rho}{\eta_{00}}$ Separately (later all 4 simultaneously)

$$\begin{array}{cccc} K_{L} & \longrightarrow & K_{L} \\ K_{L} & \longrightarrow & K_{L} + \rho K_{S} \end{array} \begin{array}{c} \pi^{+} \pi^{-} \text{ or } \pi^{0} \pi^{0} \\ \kappa_{L} + \rho K_{S} \end{array}$$

Fermi/Marshall; Dicke Switching

Subsequent Experiments

- FNAL
 - E731
 - E773
 - E799
 - KTeV
- CERN
 - NA31
 - NA48¹
- "Collider" experiments:
 - CERN
 - Frascati

1) Bernard Peyaud, Rene Turlay

From the E731 Proposal 1983

We also note that we will remove the vacuum pipe which carried the neutron beam through the apparatus; now the beam will travel through Helium. The total neutron interaction rate will be only about 60 KHz <u>assuming no</u> <u>improvement in the anomalous neutron flux</u>. The removal of the pipe gives us another factor of 2 in acceptance.

Predictions at the time Ciuchini et al.

.

KTeV Detector

KTeV: Arizona, Chicago, Colorado, Elmhurst, Fermilab, Osaka, Rice, Rutgers, UCLA, UCSD, Virginia, Wisconsin

KTeV Active Regenerator

KTEV em Calorimeter for $K_L \rightarrow \pi^0 \pi^0$

3100 Pure CsI crystals 27 rl

~2x10⁹ Ke3 decays used for calibration
 -0.03%/day/crystal

Semileptonic Charge Asymmetry from KTeV

 $\delta_{\rm L}({\rm raw}) = (3.42 \pm 0.06) \times 10^{-3}$

 $\delta_{\rm L} = (3.32 \pm 0.06 \pm 0.05) \times 10^{-3}$

FIG. 2. Invariant-mass distributions for $K_L \rightarrow 2\pi^0$ candidates with $P_T^2 < 2500 \ (MeV/c)^2$. A fit to the background is superimposed. E617

Yield after Background Subtraction

Raw double ratio:

 $R = \frac{8593988/14903532}{2489537/4130392} = 0.96$

(no acceptance correction)

Regeneration Amplitudes Determined by Fitter

Regeneration Amplitudes Determined by Fitter

Reweight K_L decays to reg. beam distribution.

Using our τ_s and Δm

History of K_S Lifetime Measurements

History of Δm Measurements

Systematic studies ϵ'/ϵ

 $\operatorname{Re}(\epsilon'/\epsilon)$ and $\operatorname{Im}(\epsilon'/\epsilon)$

 $(\Delta \Phi \simeq -3Im(\varepsilon'/\varepsilon))$

Comparison of KTeV and PDG Branching Fractions (Blucher et al)

The vast majority of the measurements of neutral kaon branching ratios and limits come from this Fermilab program of experiments

Direct CPV Summary

$$\frac{\Gamma(K^0 \to \pi^+ \pi^-) - \Gamma(\overline{K}^0 \to \pi^+ \pi^-)}{\Gamma(K^0 \to \pi^+ \pi^-) + \Gamma(\overline{K}^0 \to \pi^+ \pi^-)} = (8.8 \pm 1.3) \times 10^{-6}$$

Subtle and perhaps important feature of Nature

Superweak is not the sole source of CPV

Satisfies one of the Sakharov Conditions

Concluding Thoughts

The Next Steps in K Physics

"Unfortunately, during the past couple of years, all the US-based Kaon projects have been stopped"

A. Ceccucci in "Kaons: Review and Outlook" 2006, hep-ex/0605120 v1

(Our CsI going to Japan)

How <u>did</u> the Universe become matter dominated???

- "I remember in 1949, on a bulletin board at the Princeton IAS a photomicrograph of a nuclear emulsion event, showing what is now known as a K-meson decaying to three pions. We all saw it.
 - There could be no doubt that something interesting was going on, very different from what was then known."

Jack Steinberger

My new field (Observational Cosmology/CMB polarization) Exactly 15 years ago: first COBE results

- Anisotropies generated at 10⁻³⁵ sec reconstructed from data at 10^{13} sec???
- Just can't increase energy by 7!

Test of **CPT/Lorentz** invariance:

Amplitude $< 0.37^{\circ}$ at 90% C.L.

My students in this venture

- Bob Bernstein
- Duncan Carlsmith
- Hamish Norton
- Mike Woods
- Ritchie Patterson
- Lawrence Gibbons
- Roy Briere
- Bernhard Schwingenheuer
- Peter Shawhan
- Colin Bown

- Greg Bock
- Ko Nishikawa
- George Gollin
- Yau Wah
- Taku Yamanaka
- Bob Hsiung
- Hitoshi Yamamoto
- Sunil Somalwar
- Tony Barker
- Hogan Nguyen
- Bob Tschirhart
- Aaron Roodman
- Elliott Cheu
- Rick Kessler
- Sasha Glazov

Postdocs

The Directors

