KamLAND: Measuring Terrestrial and Solar Neutrinos

⁷Be solar neutrino

Neutrino Astrophysics

geo-neutrino

Neutrino Geophysics

reactor neutrino

Neutrino Physics

supernova, relic neutrino, solar anti-neutrinos etc.

Neutrino Cosmology

Patrick Decowski UC Berkeley & NIKHEF, Amsterdam for the KamLAND Collaboration

Measuring Neutrino Oscillation using Reactors

Neutrino Oscillation

The flavor eigenstates that neutrinos are born in, may not necessarily be the mass eigenstates:

$$|\nu_l\rangle = \sum_{i=1}^3 U_{li} |\nu_i\rangle; \quad l = e, \mu, \tau$$

where,

$$\begin{split} U_{MNSP} &= \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \\ &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \underbrace{\begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_D} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_D} & 0 & c_{13} \end{pmatrix}}_{\text{reactor/accelerator } \nu} \underbrace{\begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\text{solar/reactor } \nu} \end{split}$$

Assuming that the neutrinos are moving relativistically through space:

$$|\nu_i\rangle = e^{-i\frac{m_i^2 L}{2E}} |\nu_i(L=0)\rangle$$

We will only consider two neutrino oscillation here

Neutrino Oscillation

The flavor eigenstates that neutrinos are born in, may not necessarily be the mass eigenstates:

$$|\nu_l\rangle = \sum_{i=1}^3 U_{li} |\nu_i\rangle; \quad l = e, \mu, \tau$$

where,

Assuming that the neutrinos are moving relativistically through space:

$$|\nu_i\rangle = e^{-i\frac{m_i^2 L}{2E}} |\nu_i(L=0)\rangle$$

We will only consider two neutrino oscillation here

Reactor Neutrino Experiments

Few MeV anti-neutrinos, energy too low to produce µ Or ⊤ → disappearance experiments

Detected Reactor Spectrum

I.8MeV threshold in Inverse Beta Decay

- In practice, only 1.5 neutrinos/fission detectable
- Calculated spectrum has been verified to 2% accuracy in past reactor experiments

No near detector necessary!

5

Anti-Neutrino Detection Method

Reaction process: Inverse beta decay

$$\overline{\nu}_e + p \to e^+ + n \\ \downarrow \\ n + p \to d + \gamma$$

Scintillator is both target and detector

- Distinct two step process:
 - prompt event: positron
 - $E_{\overline{\nu}_e} \simeq E_{prompt} + 0.8 MeV$
 - delayed event: neutron capture after ~210µs
 - 2.2 MeV gamma

Delayed coincidence: good background rejection

 \overline{v}_{e}

6

Scintillator

2.2MeV

n

$\overline{\nu}_e$ from 53 Reactor Cores in Japan

70 GW (7% of world total) is generated at 130-220 km distance from Kamioka.

Reactor neutrino flux: $\sim 6 \times 10^6$ cm⁻²s⁻¹

Effective distance ~180km

1000m rock = 2700 mwe

long. 137°18′43.495″ lat. 36°25′35.562″ alt. 358 m

7

KamLAND detector

- 1 kton Scintillation Detector
 - 6.5m radius balloon filled with:
 - 20% Pseudocumene (scintillator)
 - 80% Dodecane (oil)
 - PPO
- 34% PMT coverage
 - ~1300 17" fast PMTs
 - ~550 20" large PMTs
- Multi-hit, deadtime-less electronics
- Water Cherenkov veto counter

KamLAND Physics Capabilities

Systematic Uncertainties

%	
4.7] בייניים
2.3	
I .6] ר
0.1	
2.1	
1.0	
2.5	
0.2	
6.5	
	% 4.7 2.3 1.6 0.1 2.1 1.0 2.5 0.2 6.5

Recent Full Volume calibration will help us bring down the largest syst. uncert.

> Range of radioactive sources: ²⁰³Hg, ⁶⁸Ge, ⁶⁰Co, ²⁴¹Am⁹Be, ²¹⁰Po¹³C

Patrick Decowski / UC Berkeley

Energy Spectrum

Dataset from 9 Mar 2002 to 11 Jan 2004 515.1 live days, 766.3 ton-year exposure

Best-fit oscillation:

$$\tan^2 \theta = 0.46$$
$$\Delta m^2 = 7.9^{+0.6}_{-0.5} \times 10^{-5} eV^2$$

П

$$P_{ee} = 1 - \sin^2 2\theta \sin^2\left(\frac{\Delta m^2}{4}\frac{L}{E}\right)$$

KamLAND + Solar Results

KamLAND Only

Patrick Decowski / UC Berkeley

Solar Experiments are sensitive to $\, heta$ KamLAND is most sensitive to $\,\Delta m^2$

Including SNO salt results: $\tan^2 \theta = 0.45^{+0.09}_{-0.07}$ $\Delta m^2 = 8.0^{+0.6}_{-0.4} \times 10^{-5} eV^2$

Reactor Flux Variations

Patrick Decowski / UC Berkeley

14

Can KamLAND Detect a Nuclear Test?

North Korea tested a nuclear device on Oct 9, 2006: can KamLAND detect a test of a nuclear weapon?

- Assume a test of a Hiroshima size bomb (~15kton TNT) or ~10 kg of fissile material
 - Larger bombs are detectable by other means
- Further assume:
 - All material is fully fissioned
 - Distance is ~1000km from KamLAND (across the Japanese Sea)
- Typical 3GW (thermal) reactor has a few tons of fissile material burned up in a cycle of ~18months → 10kg/day
- KamLAND measures anti-neutrinos from 53 IGW size reactors, at a an avg. distance of ~200km → rate of ~1 anti-neutrino/day

A small nuclear device will generate <0.001 of an additional antineutrino event in KamLAND

15

Geoneutrino Results

nature

THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

NATUREJOBS Highlight India

28 July 2005 www.nature.com/nature \$10

nature

no.7050

adu

GLOBAL CLIMATE Vital CO₂ flux from Amazon vegetation

BREAST CANCER Gene signature for metastasis

FORENSIC SCIENCE Everything has a fingerprint

INSIDE: INDIA

EARTHLY POWERS Geoneutrinos reveal Earth's inner secrets

Geoneutrinos

Total Earth heat-flow: 30-40TW

- Radioactive decays: ⁴⁰K, ²³²Th, ²³⁸U must contribute a significant fraction
- Anti-neutrinos from ²³²Th and ²³⁸U decays visible in KamLAND
- Reactor neutrinos main background
- Use KamLAND to measure radiogenic heat contribution

Geoneutrino Results

Current data limit radiogenic heat to < 160TW

KamLAND Future: Low Background Phase

Solar ⁷Be Measurement

- Test the Standard Solar Model
 - ⁷Be neutrino flux is the largest uncertainty in SSM

20

Testing LMA-MSW

- Test LMA-MSW
 - For ⁸B neutrinos matter resonance largest effect
 - For ⁷Be vacuum oscillations is most important
- What happens in the transition region? Sensitivity to new physics
- Need a ~5% measurement

Internal Background

- Singles Spectrum in KamLAND
 - 4m Fiducial Volume cut suppresses external ⁴⁰K and ²⁰⁸TI

Patrick Decowski / UC Berkeley

e

Identified Internal Backgrounds

- Main background sources in the solar ⁷Be analysis window:
 - From ²¹⁰Pb: ²¹⁰Bi & ²¹⁰Po
 - ⁸⁵Kr

Purification Levels

Isotope	T _{1/2}	Current Concentration	Goal	Purification Level	Method
²¹⁰ Pb	22.5 yr	10 ⁻²⁰ g/g	10 ⁻²⁵ g/g	10 ⁻⁵	Distillation
⁴⁰ K	۱0 ⁹ yr	1.9×10 ⁻¹⁶ g/g	10 ⁻¹⁸ g/g	I 0 ⁻²	Distillation
⁸⁵ Kr	l l yr	700 mBq/m ³	Ι μBq/m³	I 0 ⁻⁶	N_2 purging
238U	۱0 ⁹ yr	3.5×10 ⁻¹⁸ g/g	10 ⁻¹⁸ g/g		
²³² Th	10 ¹⁰ yr	5.2×10 ⁻¹⁷ g/g	10 ⁻¹⁶ g/g		
²²² Rn	3.8 days		<1mBq/m ³		[Produces ²¹⁰ Pb]

Liquid Scintillator Purification

Events/MeV/sec

Distillation System

Patrick Decowski / UC Berkeley

Distillation System

- Distillation into separate components: Pseudocumene (PC), Dodecane (NP) & PPO
 - 80% PC, 20% Dodecane, 1.52g/I PPO
- Liquid Scintillator (LS) is fed from KamLAND into a small (2m³) holding tank

Distillation System

- Distillation into separate components: Pseudocumene (PC), Dodecane (NP) & PPO
 - 80% PC, 20% Dodecane, 1.52g/l PPO
- Liquid Scintillator (LS) is fed from KamLAND into a small (2m³) holding tank

Distillation of Pseudocumene

- Pseudocumene distillation in first tower
 - Boiling point: 60 degC, operating pressure ~2kPa
 - Output: ~0.25t/hr of PC
- Remainder sent to next tower

Distillation of Dodecane

- Dodecane is distilled in the 2nd tower
 - Boiling point: ~100 degC, operating pressure ~2kPa
 - Output: ~1.0t/hr of dodecane
- Remainder in the distillation tower is further concentrated and sent to PPO tower

Patrick Decowski / UC Berkeley

Distillation of PPO

- PPO is the final step in distillation
 - Boiling point: ~190 deg C at 0.6kPa operating pressure
 - Output: I.5kg/h
- Remainder is disposed of

Mixing of Liquid Scintillator

- Liquid scintillator is (re)blended from PC, NP and PPO
- Monitor temperature and density

Mixing of Liquid Scintillator

- Final step is N₂ purging of the Liquid Scintillator
- Radon Removal

Low Background Phase

System installed in the mine in 2006

Liquid Scintillator Monitoring

- Liquid Scintillator will be monitored during purification
 - Light attenuation properties
 - Rn concentration in LS
 - miniLAND (small scintillator detector monitoring BiPo coincidences)
 - Electrostatic collection after trapping
 - ⁸⁵Kr concentration in a trap
- Monitoring of mechanical properties (fragile balloon)
 - Precision corioli flow meters will monitor input/output flow rates
 - Muon rates in the detector (long time average)

KamLAND will remain operational during purification – Most sensitive background monitoring tool!

Status of Distillation System

- System was installed in Fall 2006
- Engineering runs are being conducted
- Pseudocumene and Dodecane towers are successfully tested and have been run stably for several weeks
- PPO tower operates as expected, but not yet stable
- No degradation in LS after purification observed
- **Plan** once full stable operation achieved:
 - Introduce 2m³ of purified LS into KamLAND
 - Introduction of 50m³ of purified LS
 - One full volume exchange of LS (approx. 2 months)

Schedule driven by blasting in Kamioka for the XMASS cavity at the end of July – no operation during blasting

Other Measurements that will Benefit

Geoneutrino Analysis:

Even a modest purification level will eliminate the ${}^{13}C(\alpha,n)^{16}O$ background \rightarrow largest BG for reactor analysis

Patrick Decowski / UC Berkeley

KamLAND and Supernovae

 KamLAND will measure SN antineutrinos through CC with inverse beta decay

 $\overline{\nu}_e + \mathbf{p} \to \mathbf{e}^+ + \mathbf{n}$

 KamLAND can also observe neutrinos from a SN via NC proton scattering

$\nu_x + p \rightarrow \nu_x + p$

- This process would be the only model independent method capable of determining the total energy and V_x temperature.
- KamLAND requires a factor of ~10 reduction in background at low energy to achieve this sensitivity
- Also detection through NC ¹²C excitation

 $\nu_x + {}^{12}\text{C} \to \nu_x + {}^{12}\text{C}(15.11\text{MeV})$

• Narrow peak at 15 MeV in the E spectrum

Supernova Detection

Current KamLAND SN threshold is at ~0.7MeV due to DAQ rate limitations

Assuming Ikt FV and a "Standard Supernova":

Summary

- KamLAND results strengthen support for "neutrino disappearance" and LMA-MSW as the solution to the Solar Neutrino Problem
- Precision measurements: best-fit KamLAND+Solar oscillation parameters are: $\Delta m^2 = 8.0^{+0.6}_{-0.4} \times 10^{-5} eV^2$ $\tan^2 \theta = 0.45^{+0.09}_{-0.07}$
- Geoneutrino detection: new tool to investigate the Earth
- **Future**: Low background phase
 - Measurement of solar ⁷Be neutrinos: is solar oscillation only LMA-MSW? Investigating SSM
 - *Reactor* and *geoneutrino* measurements will continue with significantly lower backgrounds
 - Lower supernova threshold to ~0.2MeV

Invitation:

10:45AM R15.00001 Measuring 8 B Solar Neutrino Elastic Scattering with KamLAND , LINDLEY A. WINSLOW

T. Araki,¹ K. Eguchi,¹ S. Enomoto,¹ K. Furuno,¹ K. Ichimura,¹ H. Ikeda,¹ K. Inoue,¹ K. Ishihara,^{1,*} T. Iwamoto,^{1,†}
T. Kawashima,¹ Y. Kishimoto,¹ M. Koga,¹ Y. Koseki,¹ T. Maeda,¹ T. Mitsui,¹ M. Motoki,¹ K. Nakajima,¹ H. Ogawa,¹ K. Owada,¹ J.-S. Ricol,¹ I. Shimizu,¹ J. Shirai,¹ F. Suekane,¹ A. Suzuki,¹ K. Tada,¹ O. Tajima,¹ K. Tamae,¹ Y. Tsuda,¹ H. Watanabe,¹ J. Busenitz,² T. Classen,² Z. Djurcic,² G. Keefer,² K. McKinny,² D.-M. Mei,^{2,‡} A. Piepke,² E. Yakushev,² B.E. Berger,³ Y.D. Chan,³ M.P. Decowski,³ D.A. Dwyer,³ S.J. Freedman,³ Y. Fu,³ B.K. Fujikawa,³ J. Goldman,³ F. Gray,³ K.M. Heeger,³ K.T. Lesko,³ K.-B. Luk,³ H. Murayama,^{3,§} A.W.P. Poon,³ H.M. Steiner,³ L.A. Winslow,³ G.A. Horton-Smith,^{4,¶} C. Mauger,⁴ R.D. McKeown,⁴ P. Vogel,⁴ C.E. Lane,⁵ T. Miletic,⁵ P.W. Gorham,⁶ G. Guillian,⁶ J.G. Learned,⁶ J. Maricic,⁶ S. Matsuno,⁶ S. Pakvasa,⁶ S. Dazeley,⁷ S. Hatakeyama,⁷ A. Rojas,⁷ R. Svoboda,⁷
B.D. Dieterle,⁸ J. Detwiler,⁹ G. Gratta,⁹ K. Ishii,⁹ N. Tolich,⁹ Y. Uchida,^{9,***} M. Batygov,¹⁰ W. Bugg,¹⁰ Y. Efremenko,¹⁰ Y. Kamyshkov,¹⁰ A. Kozlov,¹⁰ Y. Nakamura,¹⁰ C.R. Gould,¹¹ H.J. Karwowski,¹¹ D.M. Markoff,¹¹ J.A. Messimore,¹¹ K. Nakamura,¹¹ R.M. Rohm,¹¹ W. Tornow,¹¹ R. Wendell,¹¹ A.R. Young,¹¹ M.-J. Chen,¹² Y.-F. Wang,¹² and F. Piquemal¹³

(The KamLAND Collaboration)

¹Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan

²Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama 35487, USA

³Physics Department, University of California at Berkeley and

Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

⁴W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125, USA

⁵Physics Department, Drexel University, Philadelphia, Pennsylvania 19104, USA

⁶Department of Physics and Astronomy, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA

⁷Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA

⁸Physics Department, University of New Mexico, Albuquerque, New Mexico 87131, USA

⁹Physics Department, Stanford University, Stanford, California 94305, USA

¹⁰Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA

¹¹Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA and

Physics Departments at Duke University, North Carolina State University, and the University of North Carolina at Chapel Hill

¹²Institute of High Energy Physics, Beijing 100039, People's Republic of China

¹³CEN Bordeaux-Gradignan, IN2P3-CNRS and University Bordeaux I, F-33175 Gradignan Cedex, France

Patrick Decon

)