Results from Super Kamiokande

Naho Tanimoto on behalf of Super Kamiokande collaborators Duke University

> April 15, 2007 APS meeting at Jacksonville in FL

Super-Kamiokande Collaboration

140 collaborators from

35 institutes of 5 countries

4/15/2007

K. Abe,¹ Y. Hayato,¹ T. Iida,¹ K. Ishihara,¹ J. Kameda,¹ Y. Koshio,¹ A. Minamino,¹ C. Mitsuda,¹ M. Miura,¹ S. Moriyama,¹ M. Nakahata,¹ Y. Obayashi,¹ H. Ogawa,¹ M. Shiozawa,¹ Y. Suzuki,¹ A. Takeda,¹ Y. Takeuchi,¹ K. Ueshima,¹ I. Higuchi,² C. Ishihara,² M. Ishitsuka,² T. Kajita,² K. Kaneyuki,² G. Mitsuka,² S. Nakayama,² H. Nishino,² K. Okumura,² C. Saji,² Y. Takenaga,² Y. Totsuka,² S. Clark,³ S. Desai,³ F. Dufour,³ E. Kearns,³ S. Likhoded,³ M. Litos,³ J. L. Raaf,³ J. L. Stone,³ L. R. Sulak,³ W. Wang,³ M. Goldhaber,⁴ D. Casper,⁵ J. P. Cravens,⁵ W. R. Kropp,⁵ D. W. Liu,⁵ S. Mine,⁵ C. Regis,⁵ M. B. Smy,⁵ H. W. Sobel,⁵ M. R. Vagins,⁵ K. S. Ganezer,⁶ J. E. Hill,⁶ W. E. Keig,⁶ J. S. Jang,⁷ J. Y. Kim,⁷ I. T. Lim,⁷ K. Scholberg,⁸ N. Tanimoto,⁸ C. W. Walter,⁸ R. Wendell,⁸ R. W. Ellsworth,⁹ S. Tasaka,¹⁰ E. Guillian,¹¹ J. G. Learned,¹¹ S. Matsuno,¹¹ M. D. Messier,¹² A. K. Ichikawa,¹³ T. Ishida,¹³ T. Ishii,¹³ T. Iwashita,¹³ T. Kobayashi,¹³ T. Nakadaira,¹³ K. Nishikawa,¹⁵ T. Sasaki,¹⁵ H. Sato,¹⁵ S. Yamamoto,¹⁵ M. Yokoyama,¹⁵ I. Kato,¹⁵ H. Maesaka,¹⁵ T. Nakaya,¹⁵ R. Srobada,¹⁷ G. W. Sullivan,¹⁸ A. Habig,¹⁹ R. Gran,¹⁹ Y. Fukuda,²⁰ T. Sato,²⁰ Y. Itow,²¹ T. Koike,²¹ C. K. Jung,²² T. Kato,²² K. Kobayashi,²² M. Malek,²² C. McGrew,²² A. Sarrat,^{1,22} R. Terri,²² C. Yanagisawa,²³ N. Tamura,²³ M. Sakuda,²⁴ M. Sugihara,²⁴ Y. Kuno,²⁵ M. Yoshida,²⁵ S. B. Kim,⁶³ I. Yoo,⁶⁶ T. Ishizuka,²⁷ H. Okazawa,⁸⁴ Y. Choi,²⁹ H. K. Seo,⁹⁹ Y. Gando,³⁰ T. Hasegawa,³⁰ K. Inoue,³⁰ H. Ishii,³¹ K. Nishijima,³¹ H. Ishion,³² Y. Watanabe,³² M. Koshiba,³³ D. Kielczewska,^{34,5} J. Zalipska,³⁴ H. G. Berns,³⁵ K. K. Shiraishi,³⁵ K. Washburn,³⁵ and R. J. Wilkes³⁵

(Super-Kamiokande Collaboration)

¹Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Gifu 506-1205, Japan ²Research Center for Cosmic Neutrinos, Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582, Japan ³Department of Physics, Boston University, Boston, Massachusetts 02215, USA ⁴Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA ⁵Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697-4575, USA ⁶Department of Physics, California State University, Dominguez Hills, Carson, California 90747, USA ⁷Department of Physics, Chonnam National University, Kwangju 500-757, Korea ⁸Department of Physics, Duke University, Durham, North Carolina 27708, USA ⁹Department of Physics, George Mason University, Fairfax, Virginia 22030, USA ¹⁰Department of Physics, Gifu University, Gifu, Gifu 501-1193, Japan ¹¹Department of Physics and Astronomy, University of Hawaii, Honolulu, Hawaii 96822, USA ¹²Department of Physics, Indiana University, Bloomington, Indiana 47405-7105, USA ¹³High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan ¹⁴Department of Physics, Kobe University, Kobe, Hyogo 657-8501, Japan ¹⁵Department of Physics, Kyoto University, Kyoto 606-8502, Japan ¹⁶Physics Division, P-23, Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA ¹⁷Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA ¹⁸Department of Physics, University of Maryland, College Park, Maryland 20742, USA 19 Department of Physics, University of Minnesota, Duluth, Minnesota 55812-2496, USA ²⁰Department of Physics, Miyagi University of Education, Sendai, Miyagi 980-0845, Japan ²¹Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, Aichi 464-8601, Japan ²²Department of Physics and Astronomy, State University of New York, Stony Brook, New York 11794-3800, USA ²³Department of Physics, Niigata University, Niigata, Niigata 950-2181, Japan ²⁴Department of Physics, Okayama University, Okayama, Okayama 700-8530, Japan Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan ²⁶Department of Physics, Seoul National University, Seoul 151-742, Korea ²⁷Department of Systems Engineering, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan ²⁸Department of Informatics in Social Welfare, Shizuoka University of Welfare, Yaizu, Shizuoka 425-8611, Japan ²⁹Department of Physics, Sungkyunkwan University, Suwon 440-746, Korea ³⁰Research Center for Neutrino Science, Tohoku University, Sendai, Miyagi 980-8578, Japan ³¹Department of Physics, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan 32 Department of Physics, Tokyo Institute for Technology, Meguro, Tokyo 152-8551, Japan 33 University of Tokyo, Tokyo 113-0033, Japan ³⁴Institute of Experimental Physics, Warsaw University, 00-681 Warsaw, Poland ³⁵Department of Physics, University of Washington, Seattle, Washington 98195-1560, USA (Received 25 July 2006; published 23 October 2006)

Contents

- Introduction of Super-Kamiokande detector
- Atmospheric neutrino flavor mixing
- Nucleon decay search
- Solar neutrino oscillations
- Conclusion

Super-Kamiokande Experiment

- A 50 kton Water Cherenkov detector
 - 1000m rock overburden (2600m w.e.)
 - 22.5 kton fiducial mass
 - Inner Detector (ID) : 11146 20-inch PMT tubes
 - Outer Detector(OD) : 1885 8-inch PMT tubes

Optical separation between inner and outer detector 4/15/2007

5

More than a Decade of SK

- SK1 (1996-2001)
 - 11146 inner(ID)/ 1885 outer(OD)PMT's; 40% of ID coverage
 - Solar v, atmospheric v, proton decay results; K2K I target

SK2 (2003-2005)

- Recovered 2001 accident with 19% ID coverage (shielded by acrylic covers), full OD
- Nearly same sensitivity as SK1;
 K2K II target

SK3 (2006-present)

- Data taking since July 2006 with full coverage
- Ready for T2K off-axis beam from J-PARC in 2009

Atmospheric neutrino results

Recent atmospheric neutrino research at SK

- Search for neutral Q-balls in SK II (Phys. Lett. B 647, 18 (2007))
- Observation of the anisotropy of 10 TeV primary cosmic ray nuclei flux with the Super-Kamiokande-I detector (Phys. Rev. D75, 062003 (2007))
- A Measurement of Atmospheric Neutrino Flux Consistent with Tau Neutrino Appearance (Phys. Rev. Lett. 97, 171801 (2006))
- Search for Diffuse Astrophysical Neutrino Flux Using Ultra-High Energy Upward-Going Muons in Super-Kamiokande I (ApJ. 652,206 (2006))
- Three flavor neutrino oscillation analysis of atmospheric neutrinos in Super-Kamiokande (Phys. Rev. D 74, 032002 (2006))
- $v_{\mu} \rightarrow v_{\tau}$ oscillation is compared with alternative exotic models (sterile neutrino, neutrino decay and neutrino decoherence)

Excellent agreement with $v_{\mu} \rightarrow v_{\tau}$ oscillation hypothesis

Allowed Oscillation Parameters(SK1+SK2)

4/15/2007

Select Tau Neutrino like events (SK1)

- Two analyses (Likelihood and Neural Network) yield consistent answers
 A best fit v_τ appearance signal (shaded area)
 - 138±48(stat.) +14.8/-31.6(syst.)
 - significance : 2.4σ
- Consistent with the expected number of v_{τ} from MC ($\Delta m^2 = 2.4 \times 10^{-3} \text{ eV}^2$)

78.4±26(sys)

Does it have to be tau neutrino?

- LEP experiments : Z decay cross section indicates there are only three active neutrino flavors, N_y=2.992±0.020
 - If only three flavors of neutrinos, it has to be tau neutrino
 - $v_{\mu} \rightarrow v_{e}$ oscillation does not explain the SK data
- Sterile neutrino (v_s: no electric, strong or weak charge) is a potential candidate of Atmospheric neutrino disappearance
 Some theoretical models predict the existence of v_s
- So, Compare $v_{\mu} \rightarrow v_{\tau}$ oscillation and $v_{\mu} \rightarrow v_{s}$ oscillation
 - Inside detector : Less NC events
 - During the propagation : Has Matter Effect ($v_{\mu} \rightarrow v_{\tau}$ doesn't have)

Tau neutrino vs Sterile neutrino

Exclusion level : 7.2σ

4/15/2007

Enderno es Balano

What about admixtures?

- Admixtures are model dependent
- SK analysis is based on Fogli et al PRD 63 (053008) 2001
 - A 2+2 mass hierarchy model
 - Construct a superposition of v_s and v_τ states \rightarrow 2 flavor mixing

Neutrino disappearance : L/E (SK1+SK2)

Survival probability of v_{μ} is a function of L/E for 2 flavor

oscillation : $P(v_{\mu} \rightarrow v_{\mu}) = 1 - \sin^2 2\theta \sin^2(\frac{\Delta m^2 L}{4E})$

Best fit: $\Delta m^2 = 2.3 \times 10^{-3}$, $\sin^2 2\theta = 1.00$

 χ^2_{min} =83.9/83 d.o.f.

Alternative models of Neutrino Disappearance

What about other possibilities?

- Neutrino Decay
 - Assuming the dominant component of v_{μ} , i.e., v_{2} , to be the only unstable state with a lifetime τ_{0}

•
$$v_{\mu} \approx \cos\theta v_2 + \sin\theta v_3, v_e \approx v_1$$
 $P_{\mu\mu} = \sin^4\theta + \cos^4\theta x \exp(-\frac{m_2}{2\tau} \frac{L}{E})$

Neutrino Decoherence effect induced by new physics

Neutrino decoherence and decay models are excluded at $\sim 5\sigma$

v osc. and decoherence(decay) coexistence

In addition, we compared two models :

Three flavor oscillation analysis (SK1)

3 flavor mixing looks like this :

$$\begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = U \times \begin{pmatrix} m_1 \\ m_2 \\ m_3 \end{pmatrix}, \qquad U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & C_{23} & S_{23} \\ 0 & -S_{23} & C_{23} \end{pmatrix} \begin{pmatrix} C_{13} & 0 & S_{13} e^{i\delta} \\ 0 & 1 & 0 \\ -S_{13} e^{i\delta} & 0 & C_{13} \end{pmatrix} \begin{pmatrix} C_{12} & S_{12} & 0 \\ -S_{12} & C_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

atmospheric ???

$$c_{ij} = \cos(\theta_{ij}),$$

$$s_{ij} = \sin(\theta_{ij})$$

In the full expression of *U*, we have 6 parameters

•
$$\theta_{12}, \theta_{13}, \theta_{23}, \Delta m_{12}^2, \Delta m_{23}^2$$
, where $\Delta m_{ij}^2 \equiv m_j^2 - m_i^2$, and δ_{CP}

Open question in neutrino physics :

 \bullet θ_{13}, δ_{CP} are nonzero?

What is the mass hierarchy?

SK approach to these problems are

<u>؞</u>

We can look for extra e-like events at high energy as an indication of θ_{13}

SK can not discriminate between v and v on an event-by-event basis.
 However, the amount of e-like excess depends on the magnitude of θ₁₃, and on the sign of the hierarchy.

For inverted hierarchy anti-v's experience this resonance 4/15/2007
Naho Tanimoto

- Three flavor oscillation Results(SK1)
- The up-down asymmetry as a function of momentum is consistent with expectation of $\theta_{13}=0$.
- No significant e-like excess has been seen.
- Both normal and inverted mass hierarchy hypothesis are tested and both are consistent.
- Solution Obtained upper limits on θ_{13} is consistent with CHOOZ limit.

Nucleon Decay Search

Past experiments and SK have set severe constraints on viable GUTs. Minimal p SU(5), Minimal SUSY SU(5) p are ruled out.

New modes are being tested.

4/15/2007

Naho Tanimoto

Preliminary

Solar neutrino

Event Reconstruction energy threshold ~6MeV

⁸B flux

Energy distribution of Solar Neutrino at SK

⁸ B flux = 0.90 x SSM = 5.21×10^{6} cm⁻²s⁻¹ hep flux = 8.62 x SSM = 6.79×10^{4} cm⁻²s⁻¹

Combined results from SK + other experiments

Solar neutrino oscillation analysis combining SK,SNO and radio chemical experiments(Gallex/SNO/SAGE)

 $\chi^2_{global}(\beta,\eta) = \chi^2_{SK}(\beta,\eta) + \chi^2_{SNO}(\beta,\eta) + \chi^2_{radiochem}(\beta,\eta)$

The Future of SK : T2K(Tokai to Kamioka)

295 km, 0.75 MW beam, 2.5 degrees of off-axis, start in 2009

Upgrade of new electronics, DAQ, GPS systems at SK

Summary

- SK3 started taking data on June 2006 with full PMT coverage
- $\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{\tau}$ oscillation is compared with alternative models
 - Mass induced $v_{\mu} \rightarrow v_{s}$ oscillation : excluded at 7.2 σ level
 - Admixture of v_s is allowed sin² ξ <0.23 at 90% C.L.
- \mathbf{v}_{τ} excess events have been observed in upward-going FC v.
- SK1 Three Flavor analysis is consistent with both mass hierarchies and the CHOOZ limit
- **I** n-n oscillation with SK1 : 1.77×10^{32} yr at 90% C.L.
- Solar neutrino oscillation analysis combining SK,SNO and radio chemical experiments(Gallex/SNO/SAGE) favor the LMA solution (tan²θ=0.40, Δm²=6.03x10⁻⁵ eV²)
- Upgrades for T2K experiment are underway

Supernova Burst Search

- Kamiokande, IMB, Baksan experiments observed the neutrino burst from SN1987A on Feb 23,1987. Since then, neutrino astronomy was started.
- SK typical core collapse SN explosion emits all types of neutrinos and has a total energy output of ~3x1053 ergs, i.e. generate 10,000 events (9,000 without n oscillation) at SK in the case of SK at 10 kpc.
- SK is sensitive to ??? (distance?)
- 2589.2 live-days of data (SK1+SK2)

SN Burst Search with Low Energy Threshold

To investigate SN clusters in lower energy (<17 MeV) events, Set the criteria of **Higher multiplicity** and **Shorter timewindow**

 \geq 3events / 0.5 sec or \geq 4events / 2.0 sec or \geq 8 events / 10 sec

32

Oscillation induced by LIV and CPTV

- Neutrino oscillation without mass
- Pure Lorentz Invariant Violation effect
- CPT violation

CPT violation

