

Charm Decays

Karl M. Ecklund

University at Buffalo *The State University of New York*

Outline

- Results from active experiments
 - BaBar, Belle, CLEO-c, (CDF, DØ), FOCUS
- Guiding principle: Charm's role in flavor physics
- Hadronic Charm Decays
 - D and D_s branching fractions
- Leptonic Charm Decays
 - decay constants from $D_{(s)} \rightarrow \mu \nu$ and $D_s \rightarrow \tau \nu$
- Semileptonic Charm Decays
 - branching fractions
 - hadronic form factors and CKM V_{cs} and V_{cd}
- Many interesting results not shown for lack of time
 - hadronic structure in multibody decays
 - rare D decays: CDF $D^0 \rightarrow \mu\mu$ search presented in session B14

Charm's role in flavor physics

Flavor physics:

- Overconstrain V_{CKM}
- Inconsistency \rightarrow new physics Unitarity Triangle Constraints
- $\boldsymbol{\cdot}$ Sin 2 $\boldsymbol{\beta}$ is theoretically clean
- $\cdot |V_{ub}|$ is not
- B mixing is not

Hadronic uncertainties confound extraction of weak physics

Charm decay measurements can validate QCD corrections needed to extract weak physics parameters from experimental observables 14 Apr 2007 K. Ecklund: Charm Decays @ APS Meeting

Vub | from semileptonic B decay

If quarks were like muons:

$$\Gamma(b \to ue \nu) = \frac{G_F^2 m_b^5}{192\pi^3} |V_{ub}|^2$$

- Rate goes like $|V_{ub}|^2$ But quarks always in hadrons
- QCD form factor f₊(q²) needed to extract weak interaction physics

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2}{24\pi^3} |V_{ub}|^2 p_\pi^3 |f_+(q^2)|^2$$

14 Apr 2007

UT Constraint from $|V_{ub}|$

$$|V_{ub}|$$
 from $B \rightarrow \pi \ell \nu$:

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2}{24\pi^3} |V_{ub}|^2 p_\pi^3 |f_+(q^2)|^2$$

Form factor f(q²):
Hard to calculate
Limits |V_{ub}| precision
Lattice QCD can do

- from first principles
- $D \rightarrow \pi \ell \nu$ to $B \rightarrow \pi \ell \nu$ are both "heavy to light" decays
- Precise measurement of $D \rightarrow \pi \ell v$ can calibrate LQCD and allow a precise extraction of $|V_{ub}|$ from $B \rightarrow \pi \ell v$
- Absolute rate and shape is a stringent test of theory

14 Apr 2007

$|V_{td}|$ from $B^0 - \overline{B^0}$ mixing

- Mixing rate depends on $|V_{td}|^2$
- + QCD correction here is partly decay constant $f_{\rm B}$
 - probability of wave function overlap ψ(r=0)
- Hard to calculate @ small q² low energy QCD
 - Lattice QCD to ~15%
- Same for meson decay
- Can measure annihilation decay
 - Belle: PRL 97, 251802 (2006) Evidence for $B^- \rightarrow \tau^- v$ (3.5 σ) $f_B = 229 \pm 36 \pm 37$ MeV (20%)
- But would like a *precise* measurement

UT Constraint from B mixing

- Lattice QCD predicts decay constants $f_D \& f_B$
- Charm sector measurements of $f_{D(s)}$ from $D_{(s)} \rightarrow \mu \nu$ can increase our confidence in the non-perturbative QCD calculations of f_B needed to interpret Δm and Δm_s direct measurement of $B \rightarrow b \nu$ is much harder!
- Better constraint on $|V_{ts}/V_{td}|$ from $\Delta m_s/\Delta m_d$
 - still want to check f_{Ds}/f_{D}

14 Apr 2007

CKM Matrix

Current V_{CKM} From direct Measurements -no unitarity imposed

charm decay measurements:

- direct access to 2nd generation elements
- enable improvements in 3rd generation elements

14 Apr 2007

CLEO-c Hadronic D Decays

Presented in session B14 X.Shi

$e+e-\rightarrow \psi(3770) \rightarrow D \overline{D} (D^0 \overline{D}^0 \text{ or } D^+ D^-)$

- · Just above threshold: no additional particles are produced
- Fully reconstruct one D in the event, e.g. $D^0 \rightarrow K^- \pi^+$

Energy and Momentum Conservation:

$$E_D = E_K + E_\pi$$
$$\vec{p}_D = \vec{p}_K + \vec{p}_\pi$$

$$\Delta E = E_{\text{beam}} - E_D$$
$$M(D) = \sqrt{E_{\text{beam}}^2 - \left| p_B \right|}$$

resolution: 7-10 MeV 1.3 MeV

14 Apr 2007

CLEO-c Hadronic D Decays

Presented in session B14 X.Shi

$e+e-\rightarrow \psi(3770) \rightarrow D \overline{D} (D^0 \overline{D}^0 \text{ or } D^+ D^-)$

- Just above threshold: no additional particles are produced
- Fully reconstruct one D in the event, e.g. $D^0 \rightarrow K^- \pi^+$

Energy and Momentum Conservation:

$$E_D = E_K + E_\pi$$
$$\vec{p}_D = \vec{p}_K + \vec{p}_\pi$$

$$\Delta E = E_{\text{beam}} - E_D$$
$$M(D) = \sqrt{E_{\text{beam}}^2 - |p_D|}$$

<u>resolution</u>: 7-10 MeV 1.3 MeV

14 Apr 2007

Double Tag Events

 $D^+ \rightarrow K^-\pi^+\pi^+ \& D^- \rightarrow K^+\pi^-\pi^-$

- Tagging effectively makes a single D beam
- Can tag ≈22% of D's produced! ٠

14 Apr 2007

Single Double tagged D tagged D π $N_i = N_{D\overline{D}} B_i \mathcal{E}_i$ $N_{ii} = N_{D\overline{D}} B_i B_i \varepsilon_{ii}$ $B_{i} = \frac{N_{ij}}{N_{j}} \frac{\varepsilon_{j}}{\varepsilon_{ij}} \qquad N_{D\overline{D}} = \frac{N_{i}N_{j}}{N_{ij}} \frac{\varepsilon_{ij}}{\varepsilon_{i}\varepsilon_{j}}$ $\frac{\mathcal{E}_{ij}}{\mathcal{E}_{ij}} \approx \frac{\mathcal{E}_i \mathcal{E}_j}{\mathcal{E}_i} = 16 - 65\%$ 9 modes, simultaneous χ^2 fit including correlations on N, ε D Decay Mode $\overline{K^{-}\pi^{+}}$ to extract 9 B_i & N(DD) $K^{-}\pi^{+}\pi^{0}$ 56 pb⁻¹: PRL 95 121801 (2005) $K^-\pi^+\pi^+\pi^ K^-\pi^+\pi^+$ 281 pb⁻¹: Preliminary results $K^-\pi^+\pi^+\pi^0$ reported at this meeting (X.Shi) $K^0_S \pi^+$ Additional data in hand now (~280 pb⁻¹) $K_{S}^{0}\pi^{+}\pi^{0}$

And from run through Mar'08 (~300 pb⁻¹)

 $K^{0}_{S}\pi^{+}\pi^{+}\pi^{-}$

 $K^+K^-\pi^+$

14 Apr 2007

CLEO-c hadronic decay results

Comparison to other measurements BF($D^0 \rightarrow K^- \pi^+$)

Precision measurements of many D⁰, D⁺ decay modes

14 Apr 2007

Leptonic D_(s) Decay

 Measure rate to extract f_D and f_{Ds}
 Useful to calibrate V_{td}/V_{ts} from B_(s)⁰ mixing

$$\mathcal{B}(D \to \mu \nu) = \Gamma \tau_D \approx 4 \times 10^{-4}$$

$$\mathcal{B}(D \to \tau \nu) \approx 4 \times 10^{-3}$$

$$\mathcal{B}(D_s \to \mu \nu) \approx 6 \times 10^{-3}$$

 $\mathcal{B}(D_s \to \tau \nu) \approx 6 \times 10^{-2}$

decay constant

 $\Gamma(D \to \mu \nu) = \frac{G_F^2}{8\pi} |V_{cd}|^2 (f_D^2) n_\mu^2 M_D^2 \left(1 - \frac{m_\mu^2}{M^2} \right)^2$

measures overlap of quark wave functions

14 Apr 2007

CLEO-c $D^+ \rightarrow \mu \nu$

281 pb⁻¹ PRL 95, 251801 (2005) Use 158k tagged D⁻ decays Require

- one μ candidate with MIP-like shower
- no extra tracks
- no unmatched showers with E_{cc} > 250 MeV
- $\mathcal{B} = (4.40 \pm 0.66 \pm 0.09) \times 10^{-4}$ f_D= (222.6 \pm 16.7 \pm 2.8) MeV

Unquenched Lattice QCD 201±3±17 MeV PRL 95, 122002 (2005) signal region: 50 events 2.8 estimated background

14 Apr 2007

BaBar $D_{s} \rightarrow \mu \nu$

hep-ex/0607094

 $e^+e^- \rightarrow D_s^* D_{tag} X$; D_{tag} is fully reconstructed $D_{(s)}^{(*)}$ Then look for $D_s^* \rightarrow D_s \gamma$; $D_s \rightarrow \mu \nu$: $\Delta M = M(\mu v \gamma) - M(\mu v)$ signal peak at 143 GeV

- Measure also $D_s \rightarrow \phi \pi$ to normalize
- Detailed systematic understanding •

CLEO-c $D_s \rightarrow \mu \nu \& D_s \rightarrow \tau \nu; \tau \rightarrow \pi \nu$

- e⁺e⁻→D_sD_s* @ √s=4170 MeV
 314 pb⁻¹
- Fully Reconstruct
 - 19k D_s tags (8 modes)
 - Recoil Mass peaks at D_s*
 - count tags by fit
- Add a single track
 - μ: MIP-like in Calorimeter
 - π : sometimes E_{cc}>200 MeV
 - MM² peaks at 0 for $\mu\nu$
 - and near 0 for τv ; $\tau \rightarrow \pi v$
- Veto events with
 - extra tracks
 - extra neutral energy
- Kinematic Fit
 - improved resolution
 - resolve ambiguity: $D_s^* \rightarrow D_{s\gamma}^\gamma$ on tag or signal side

14 Apr 2007

CLEO-c f_{Ds} Results

14 Apr 2007

CLEO-c $D_s^+ \rightarrow \tau^+ v$; $\tau^+ \rightarrow e^+ v v$

<u>2nd Complementary Analysis with $\tau^+ \rightarrow e^+ \nu \nu$ </u>

- Signal production of e+: $B(D_s^+ \rightarrow \tau^+ v)B(\tau^+ \rightarrow e^+ vv) \sim 1.3\%$
- Background: $B(D_s^+ \rightarrow Xe^+v) \sim 8\%$

<u>Technique:</u>

- Use D_s^- tags and e^+
- Suppress background
 - no additional tracks and
 - Σ Ecal < 400 MeV
- No need to find γ from D_s^*
- $B(D_{s}^{+} \rightarrow \tau^{+} \nu)$ =(6.29±0.78±0.52)%
- f_{Ds}=278±17±12 MeV
 Preliminary @ ICHEP 06
 195 pb⁻¹ near √s=4170 MeV

14 Apr 2007

Ъ

f_{D(s)}: Comparison to Theory

CLEO results-

 Good agreement with unquenched LQCD

Calculations

 Comparable uncertainties already!
 More data to come!

			1770307 - 018a
CLEO D _s $\rightarrow \mu\nu, \tau\nu \ (\tau \rightarrow \pi\nu)$ Final March07, 314/pb	Heri		
CLEO D _s $\rightarrow \tau \nu (\tau \rightarrow e \nu \nu)$ prelim ICHEP 2006, 195/pb	H-O-H	Artuso,	
CLEO average	Hei	PRL95, 251801 (2005)	H
	275 <u>+</u> 10 <u>+</u> 5	223 <u>+</u> 17 <u>+</u> 3	1.24 <u>+</u> 0.09 <u>+</u> 0.03
Unquenched LQCD Aubin, PRL 95, 122002 (2005)	HeH	HeH	He-I
Quenched L. (QCDSF) Ali Khan, hep-lat/0701015	HOH	HHH	101
Quenched L. (Taiwan) Chiu, PLB 624, 31 (2005)	HeH	HOH	нөн
Quenched L. (UKQCD) Lellouch, PRD 64, 094501 (2001)	HeH	HeH	HOH
Quenched Lattice Becirevic, PRD 60, 074501 (1999)	HeH	Hel	IOI
QCD Sum Rules Bordes, hep-ph/0507241	⊢ ●−1	H H H	Hel
QCD Sum Rules Narison, hep-ph/0202200	⊢●→	⊢●⊣	HeH
Quark Model Ebert, PLB 635, 93 (2006)	•	•	•
Quark Mode Cvetic, PLB 596, 84 (2004)	⊢ ●−1	⊢ ●-1	•
Light Front QM Linear Choi, hep-ph/0701263	•	•	•
Light Front QM HO Choi, hep-ph/0701263	•	•	•
Potential Model Wang, Nucl. Phys. A744, 156 (2004)	•	•	•
Light Front QCD Salcedo, Braz. J. Phys. 34, 297 (2004)	•	•	•
Isospin Splittings Amundsen, PRD 47, 3059 (1993)			
	200 250 300	200 300	0 1 1.2 1.4
	f _{Ds} (MeV)	f _D (MeV)	f_{D_s} / f_{D}

Semileptonic Decays

Focus on recent results in Pseudoscalar final states: K, π Will not show:

• $D \rightarrow \eta en/\eta' en/\phi en (J.Ge)$ presented in session B14

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2}{24\pi^3} |V_{cx}|^2 p_X^3 |f_+(q^2)|^2$$

$$q^{2} = (p_{D} - p_{X})^{2}$$
$$= M_{D}^{2} + M_{X}^{2} - 2E_{X}M_{D} + \vec{p}_{D} \cdot \vec{p}_{X}$$

Ъ

Belle $D^0 \rightarrow \pi^- \ell^+ \nu \& D^0 \rightarrow K^- \ell^+ \nu$

Fully reconstructed $e^+e^- \rightarrow D^{(*)}D^*X$ events \sqrt{s} =10.6 GeV Allows count of D^0 independent of decay Neutrino inferred from missing E,p $D^{*+} \rightarrow D^0 \pi^+$ used to improve S/N Excellent q^2 resolution: $\sigma(q^2)=0.017 \ GeV^2$ Measure rate directly $\frac{d\Gamma}{da^2} = \frac{G_F^2}{24\pi^3} |V_{cx}|^2 p_X^3 |f_+(q^2)|^2$

14 Apr 2007

BaBar D⁰→K⁻e⁺v

arXiv:0704.0020 75 fb⁻¹

e⁺e⁻→cc̄ at √s=10.6 GeV

- Reconstruct $D^{*+} \rightarrow \pi^+ D^0$ and signal $D^0 \rightarrow Ke_V$
- Estimate p_D and $E_{\rm v}$ with remaining event & kinematic fits
- Use Neural Nets to suppress backgrounds

- high statistics
- good S/N

BaBar $f_{+}(q^2) D^0 \rightarrow K^- e^+ v$ arXiv:0704.0020 75 fb⁻¹

 $q^2 = (p_D - p_X)^2$

85k signal/11k background

- Corrected spectrum compared to LQCD¹, FOCUS²
 - ¹ Aubin et al. PRL 94, 011601 (2005) ² PLB607, 233 (2005)

14 Apr 2007

CLEO-c $D \rightarrow \pi e^+ v \& D \rightarrow K e^+ v$

Tagged Analysis

reliminary 1 281 pb⁻¹ N

Presented by B.Xin Session B14 <u>Neutrino Reconstruction</u>

- extremely clean
- well separated backgrounds
- q2 resolution: σ =0.012 GeV²

better statistics

larger systematic uncertainty
~40% overlap in event samples

14 Apr 2007

U→K⁻e⁺v Form Factor Comparisons

14 Apr 2007

G $D^0 \rightarrow \pi^- e^+ v$ Form Factor Comparisons

14 Apr 2007

Summary & Conclusions

- Charm decays are measured with precision
- Charm measurements complement flavor physics investigations in the b sector
 - aid interpretation of B mixing
 - assist extraction of $V_{\mbox{\tiny CKM}}$ especially $V_{\mbox{\tiny ub}}$
 - by constraining QCD effects
- Unquenched Lattice QCD decay constant results appear trustworthy but...
 - experimental precision exceeds current LQCD
 - hints of differences for semileptonic Form factors
 - Kev experimental discrepancy?
 - normalization of form factor \rightarrow 10% uncertainty on V_{cx}
- Additional data from BaBar, Belle, CLEO
 - more precise results to come!

Additional Slides

CLEO-c D_s Hadronic results

- Tagging with $D_s D_s^*$
- $D_s^* \rightarrow D_s \gamma$

Preliminary hep-ex/0607079 PDG 2006 fit K_s K⁺ CLEO Preliminary, 195 pb¹ K⁺ K⁻ π⁺ -----K⁺ K⁻ π⁺ π⁰ $\pi^{+} \pi^{+} \pi^{-}$ π⁺ η π⁺ η' 3 5 6 2 n Branching Fraction (%)

Partial BF for $D_s \rightarrow \phi \pi$ interference with $f_0(980)$ $M(KK)=M_{\phi}\pm 10 \text{ MeV}$ $BF=(1.98 \pm 0.12 \pm 0.09)\%$ $M(KK)=M_{\phi}\pm 20 \text{ MeV}$ $BF=(2.25 \pm 0.13 \pm 0.12)\%$

Ъ

CLEO-c D_s Hadronic Decays

Additional Hadronic Decays

- PRL 96, 081802 (2006)
- Single Tag Measurement

D⁰ modes shown on left

14 Apr 2007