

Scope of the LHC Program

- Proton-proton collider
 - New facility about to become operational at CERN
 - ◆ 7 TeV + 7 TeV with design luminosity of 10³⁴/cm²/sec
 - ▲ 7 times the energy of the Fermilab Tevatron and ~100 times the luminosity
 - Project approved in 1996
 - ▲ In preparation for many years!
- 4 interaction points equipped with experiments
 - ATLAS and CMS to study short-distance phenomena (the subject of this talk)
 - ▲ > 20% US participation in each experiment
 - LHCb to study b-physics
 - ALICE for heavy ion physics

Detector Preparation

 We heard this morning from D. Lissauer and J. Mans on the ATLAS and CMS detectors

ATLAS Detector Preparation

Barrel Inner Detector Installation 8/06

Cosmic Ray in Underground Hall 12/06

Toroid with End-Cap Cal. 11/06

End-Cap Muon Trigger Plane

CMS Detector Preparation

Underground Hall: 2/07

YB0 in Surface Hall

Cosmic Ray Challenge 8/06

Plans for First Operation

- First beam-beam collisions expected late this year
 - A brief engineering run with a few days of collisions at very low luminosity
 - ▲ Limit stored energy until control systems are well established
 - ▲ Run close to injection energy: 450 GeV + 450 GeV
 - ▲ Most operation at 43 proton bunches/beam (vs. nominal 2808)
 - ▲ No beam squeeze at interaction point to raise luminosity
 - ▲ Expected peak luminosity ~10²⁹ /cm²/sec
- Very important milestone
 - Demonstrate basic functionality of collider and detectors
 - Provide first operational experience
 - ▲ Machine will be off for 6 months of final installation and testing following this engineering run
 - ▲ respond to issues seen in test run, prior to physics run

First Engineering Run

- Physics event yield is modest
 - 5 days, ε=30%, L=10²⁹ /cm²/sec ⇒15 nb⁻¹

First Engineering Run

- But ~ 3 KHz rate for minimum bias interactions (soft interactions)
 - can record at ~ 100 Hz
 - 5 days @ ε =30%, 100 Hz \Rightarrow ~12M events
 - Will bathe the detectors' trackers and calorimeters
 - ▲ Charged particles
 - ▲ Photons
 - ▲ Low P_t muons
 - Very useful for initial debugging, calibrations, alignments
 - Exercise computing and off-line processing systems

Operation beyond 2007

- In 2008, 130 days for physics operation
 - Estimated integrated luminosity ~ 1fb⁻¹ (40 days, ε=60%, L=5x10³²)
- In 2009, closer to routine operation
 - ◆ Assume integrated luminosity ~ 7 fb⁻¹ (design ~ 70 fb⁻¹)

Physics Potential in First Few Years

- Standard Model Physics
 - A few prominent examples here (but many more)
 - ▲ Jet physics
 - ▲ Top physics
 - ▲ Gauge boson production
 - Interesting measurements + essential calibration using well understood phenomena
- Search for supersymmetry
- Search for Higgs boson
- Search for exotics
 - Heavy gauge bosons (Z')
 - ▲ Extra dimensions
 - ▲ GUT theories
 - Mini-black holes

Jet Physics

- Jets very distinctive
- Statistics from first physics run give $\delta N/N < 1\%$ to $P_t \sim 1.3$ TeV/c
- Jet energy scale uncertainties likely to dominate
 - Conversion of detector measurement to parton energy
 - $\delta E_p/E_p \sim 5\% \Rightarrow \delta \sigma/\sigma \sim 30\%$ • At P_t ~ 1.3 TeV/c

Jet Physics

- Best sensitivity to new heavy states in di-jet mass spectrum is through a ratio like $\frac{N(|\eta| < 0.5)}{N(0.5 < |\eta| < 1.0)}$
 - Production of heavy state suppressed at high rapidity relative to QCD
 - Ratio is insensitive to jet energy scale effects, luminosity, etc.
 - 1 fb⁻¹ sample can discover a contact interaction with Λ < 10 TeV at 5σ level or better (probes distances to \sim 10⁻¹⁸ cm)
- Establish calibration and performance of calorimeters
 - Essential for many "new physics" channels
 - Establish relative calibration of calorimeter channels through di-jet events at different rapidities and azimuthal angles
 - A Require momentum conservation and independence of rate with φ
 - Establish absolute calibration of jets relative to EM calorimeter via
 - \blacktriangle Z+jet and γ +jet final states

Top-Quark Physics

- LHC is a "top factory"
 - $\sigma \sim 830$ pb for $t\bar{t}$ production (~ 100 X Tevatron, S/N ~ 10 X)
 - 5% $t + \overline{t} \rightarrow \ell^+ \nu_{\ell} b + \ell^- \overline{\nu}_{\ell} \overline{b}$ ($\ell = \mu$ or e)
 - ▲ seen as two leptons, missing energy, two b jets
 - ▲ "dilepton channel"
 - ▲ Clean channel but weaker kinematic constraints
 - Can obtain ~ 600 events with S/N ~12:1 from 1 fb⁻¹ sample
 - 30% $t + \overline{t} \rightarrow \ell^+ v_{\ell} b + qq' \overline{b}$ (for $\ell = \mu$ or e)
 - ▲ "Lepton plus jets" channel
 - ▲ Selection cuts with b-tagging (2)
 - ▲ Jet pairing, kinematic fit (CMS TDR)
 - ▲ 5200 events from 1 fb⁻¹ with S/N ~27:1
 - $-\delta M_t \sim 0.5 \text{ GeV (statistical)}$
 - Principal error is jet energy scale
 - $\delta E_p/E_p \sim 5\% \Rightarrow \delta M_t \sim 3 \text{ GeV}$

Top-Quark Physics

- Top channels provide important calibration checks
 - Understand detector performance in complex topologies

Can see signal on one side without requiring b-tagging

Gauge Boson Production

- Single gauge bosons + jets have well known properties
 - Large cross section for $pp \to W + X$, $W \to \ell^{\pm} \nu$ (7.8 nb)
 - Also for $pp \rightarrow Z + X$, $Z \rightarrow \ell^+ \ell^-$ (1.2 nb)

- Calibrate performance for isolated leptons over the full detector
- $m_T = \sqrt{2p_T^e p_T^v} (1 \cos \Delta \varphi)$ for W channel involves missing energy reconstruction

Gauge Boson Production

- Single gauge bosons
 - Can measure M_w (a challenging measurement in early years!)
 - ▲ 1 fb⁻¹ capable of $\delta M_W = \pm 40\pm 25$ MeV
 - Well known cross section provides a source of luminosity determination
 - Δ δ L/L ~ 7% Cross check other methods
- Multi-boson production
 - W±Z⁰ and W±γ reflect triple-gauge-boson coupling
 - ▲ Cross section large for W[±]Z⁰ (50 pb)

Important background to "new physics" searches

- ◆ Also Z⁰Z⁰
 - ◆ Background to H⁰
 - Small signal meas.

- Supersymmetry
 - A supersymmetric partner for every known particle
 - Very attractive theoretically since it maintains a low Higgs mass
 - Symmetry breaking mechanism is unknown
 - ▲ Leads to VERY large parameter space
 - ▲ Final state properties depend on location in parameter space
 - Many versions have stable lightest supersymmetric particle (LSP)
 - ▲ "R-parity conserving"
 - SUSY states carry R-parity
 - ▲ Neutral particle with weak interaction cross sections
 - ▲ Invisible in detector except for missing energy and momentum
 - Possible source of dark matter
 - No direct experimental evidence
 - ▲ Limits from LEP, Tevatron, CMB properties, and terrestrial dark matter searches
 - ◆ To preserve a light Higgs, SUSY mass scale should be below ~ 1 TeV

- One variant is the minimal supergravity symmetry breaking scheme
 - mSUGRA
 - Described by 5 parameters [m₀, m_{1/2}, A₀, tanβ, sign(μ)]
 - Commonly used to characterize detector performance levels
 - ▲ Other breaking scenarios also lead to different but characteristic experimental signatures
- Pair production of squarks and gluinos expected to have large cross sections if above threshold
 - ◆ They cascade down to LSP, h⁰, H[±], SM states

Detection requires ~ 100 produced events for $\epsilon \sim 10\%$

- Initial searches likely to be inclusive
 - Best sensitivity
 - Minimal assumptions on details of model
 - Jets + MET, lepton + jets + MET, same sign dileptons + jets
- If signal found, investigate properties with other final states
- Consider low mass point and high mass point
 - Require E_T^{miss} > 200 GeV and 3 jets with E_T> 30 GeV, lηI<0.3

$$m_0 = 180 \text{ GeV}, m_{1/2} = 850 \text{ GeV}$$

- Optimize analysis based on high mass point and scan parameter space (require E_T^{miss} > 600 GeV at high masses)
 - Early LHC running should double existing limits
 - Later LHC running should cover full parameter space for "weakscale" SUSY

Higgs Boson

- Many standard model predictions tested at a per mil level
 - Higgs boson not yet detected but an essential ingredient in these predictions
 - Best estimate for Higgs mass from fitting electroweak observables is $M_H = 76^{+33}_{-24}$ GeV with $M_H < 182$ GeV @ 95% CL
 - Current lower limit from direct searches $M_H > 114$ GeV @ 95% CL
 - Minimal SUSY theories predict a light Higgs with $M_H \le 140$ GeV
- Higgs discovery is a major goal of the LHC program

Top Loop \sim 35 pb, M_H = 130 GeV

Vector Boson Fusion $\sim 4 \text{ pb}, M_{H} = 130 \text{ GeV}$

Higgs Boson ($H \rightarrow \gamma \gamma$)

- Consider two complementary search channels for mass range below 140 GeV
 - $H \rightarrow \gamma \gamma$
 - ▲ Small branching ratio (~ 0.2%) but very characteristic signature
 - Background from jet-jet, γ -jet, and γ - γ production
 - ▲ EM calorimeter must have very uniform calibration (eg. 0.3-1% from 10 fb⁻¹ of W[±] \rightarrow e[±] v data)
 - ▲ Need good vertex measurement to preserve mass resolution

Higgs Boson ($H\rightarrow\gamma\gamma$)

- The two detectors have similar sensitivity but different strengths
 - CMS: Superb energy resolution via crystal EM calorimeter
 - ATLAS: Excellent measurements of shower shapes and vertex position via highly segmented LAr calorimeter
- Need 10's of fb⁻¹ for discovery in this channel alone

ATLAS

Higgs Boson ($H \rightarrow ZZ \rightarrow 4 \ell$)

- $\bullet \quad H \to ZZ^{(*)}$
 - ▲ Large branching ratio and very characteristic signal
 - $-\Gamma_{\rm H}$ < 1 GeV for M_H < 190 GeV
 - A Powerful lepton detection (μ and e) in both detectors
 - $-\delta M \sim 1.5-2 \text{ GeV}$
 - ▲ Significant backgrounds
 - Reducible backgrounds: tt, Zbb
 - Irreducible backgrounds: qq→ZZ*→4 ℓ
 - ▲ Strong isolation cuts essential

Higgs Boson (All Modes)

25

- In detector comparisons note use of LO (no K-factors in ATLAS case) and NLO cross sections (CMS case)
- Several channels contribute to sensitivity at a given M_H
- Good discovery potential for SM Higgs from 10 fb⁻¹

Exotic Processes (Extra Gauge Bosons)

- Many models predict extra gauge bosons (Z')
 - Sequential Standard Model
 - Grand unified theories
 - "Left-right" models
- Present experiments explore to ~ 1 TeV
- Early LHC running will go beyond this (angular distributions important)

KK Z' boson in TeV⁻¹-sized extra dimensions

Exotic Processes (Mini Black Holes)

- Models with extra dimensions and a reduced Planck scale may allow the production of mini black holes
 - Parton-parton impact parameter less than Schwarzschild radius
- The black holes evaporate via Hawking radiation
 - Spherical emission of all types of particles
- Example for 2 TeV Planck scale and M_{BH} > 2 TeV

Conclusions

- First engineering run important for shaking down all systems
- We expect ~1fb⁻¹ from the 2008 physics run at 14 TeV
 - Parton-parton scattering to a few TeV
 - Copious top production
 - Copious gauge boson production
 - ▲ Calibrate detector
 - ▲ Measure background levels for searches
 - First look for SUSY
 - ▲ Will already significantly expand existing limits
- Later years
 - → Higgs search (needs ~10 fb⁻¹to cover full range)
 - Expand SUSY search to full range for "weak-scale" SUSY
 - Extend all searches to higher mass scales
- A very exciting physics program is about to get underway
 - Even the first year should be productive