Physics at Extreme Temperatures and Energy Densities

APS Meeting

Jacksonville, April 14, 2007

Bolek Wyslouch MIT

The "Little Bang" in the laboratory: Heavy-lon Collisions

- QGP formed in tiny region (~10⁻¹⁴ m) for very short times (~10⁻²³ s)
- Collision dynamics: Different observables sensitive to different
 reaction stages

Energy densities in central AA collisions

- T.D. Lee: "In HEP we have concentrated on experiments in which we distribute a higher and higher amount of energy into a region with smaller and smaller dimensions. In order to study the question of 'vacuum', we must turn to a different direction; we should investigate 'bulk' phenomena by distributing high energy over a relatively large volume." [Rev.Mod.Phys.47(1975)267]
- Energy density: "Bjorken estimate" (for a longitudinally expanding plasma):

$$\epsilon_{Bj} = \frac{dE_T}{dy} \frac{1}{\tau_0 \pi R^2}$$

QCD: Strong force

- QCD is a QFT with very rich dynamical content: asymptotic freedom, confinement, (approx.) chiral symmetry, non-trivial vacuum, ...
- The only sector of the SM whose collective behaviour can be studied in the laboratory: phase transition(s), thermalization of fundamental fields, ...
- QCD has a very diverse many-body phenomenology at various limits:

High-energy heavy-ion physics programme (in 4 plots)

1. Understand 2 basic properties of strong interaction: (de)confinement, chiral symm. breaking/restoration

Y = In 1/xReggeon
Pomeron

Reggeon
Pomeron $|\alpha_x \ln |x|^n$ BFKL $|\alpha_x \ln |Q^2|$ $|\alpha_x \ln |Q^2|$ $|\alpha_x \ln |Q^2|$

2. Study the phase diagram of QCD matter: produce & study the QGP

3. Probe conditions quark-hadron phase transition in primordial Universe (few μsec after the Big Bang)

4. Study the regime of non-linear (high density) many-body parton dynamics at small-x (CGC)

APS Jacksonville, April 14, 2007

T [MeV]

Relativistic Heavy-Ion Collider (RHIC) @ BNL

3.83 km circumference – 2 independent rings:

- 120 bunches/ring,106 ns crossing time
- 400 superconducting dipoles, 500 quadrupoles

A+A,p(d)+A collisions @ $\sqrt{s_{NN}}$ = 200 GeV (polarized) p+p colls @ $\sqrt{s_{max}}$ = 500 GeV

 $\mathcal{L}=1.5\ 10^{31}\ cm^{-2}\ s^{-1}=15\ \mu b^{-1}s^{-1}\ (\sim 0.6\ MHz)$

Experiments: PHENIX,STAR,PHOBOS,BRAHMS

Runs 1 - 6 (2000 – 2006):

Au+Au @ 200, 130, 62.4, 22 GeV Cu+Cu @ 200, 62.4 GeV d+Au @ 200 GeV p+p (polarized) @ 200, 62, 22 GeV

4 RHIC experiments

large acceptance

2 magn. dipole spectrometers in "fix-target" config.

APS Jacksonville, April 14, 2007

Hadrons, e^{\pm} , μ^{\pm} , γ . High-rate DAQ. Hard & penetrating probes

Collision Geometry

➤ Centrality:

Peripheral collision

Semi-Central collision

Central collision

90-100%

Centrality

0-10%

- N_{part} = # of participant nucleons: 2 \rightarrow 2xA ~ 400
- N_{coll} = # of binary nucleon-nucleon collisions: 1 → ~1200

> Reaction plane:

Fourier decompose azimuthal yield:

$$\frac{d^3N}{d\varphi dp_T dy} \propto \left[1 + 2v_1 \cos(\varphi) + 2v_2 \cos(2\varphi) + \dots\right]$$

Centrality and reaction plane determined on event-by-event basis.

Total AA hadron multiplicity at RHIC (I)

AuAu (200 GeV) 0-5% central collisions:

~ 700 charged particles per unit rapidity at y=0

Predicted multiplicites:

"Reduced" multiplicity predicted by saturation models (reduced parton flux).

Gluon saturation - Color Glass Condensate

Strong rise at low-x of gluons observed at HERA:

Radiation controlled by QCD evolution eqs.:

Q² - DGLAP: $F_2(Q^2) \sim \alpha_s \ln(Q^2/Q_0^2)^n$, $Q_0^2 \sim 1 \text{ GeV}^2$ **x - BFKL:** $F_2(x) \sim \alpha_s \ln(1/x)^n$

Linear equations (single parton radiation/splitting) cannot work at low-x: Unitarity violated (even for $Q^2 >> \Lambda^2$), collinear & k_T factorization break

- \rightarrow Gluons overlap below "saturation scale" $Q_s(x)$
- Color Glass Condensate = effective-field theory describes hadrons as classical fields below Q_s (non-linear JIMWLK, BK evolution eqs.).
- >> Saturation effects enhanced in nuclear targets:

10

Total AA hadron multiplicity at RHIC (II)

Color Glass Condensate: Final hadron multiplicity \propto Initial multiplicity of released gluons \propto Q $_{\rm s}^2$

$$\frac{dN}{d^2bd\eta} \propto \frac{1}{\alpha_s(Q_s^2)} Q_s^2 \propto xG(x, Q_s^2) \cdot A^{1/3}$$

+ "local parton-hadron duality" (1 gluon = 1 final hadron)

Centrality & √s dependence well described:

Collision of 2 classical (saturated) fields

Suppressed forward dAu p_T spectra

➤ Particle production at forward rapidities sensitive to small-x in the "target"

$$x_2^{min} \sim p_T / \sqrt{s} \cdot e^{-y} = x_T \cdot e^{-y}$$

Every 2-units of y, x^{min} decreases by ~10

⇒ Suppression of hadron spectra: $p_T \sim 2 - 4$ GeV/c at forward rapidities sensitive to partons at $x_2 \sim 10^{-3}$

Ratio dAu/pp < 1 ___

consistent w/ reduced # of partonic scattering centers in Au at low-x

> However: RHIC (& HERA) saturation "evidences" too close to non-perturbative regime $(Q_s^2 \sim 1-2 \text{ GeV})$. Much better conditions at LHC $(Q_s^2 \sim 5 \text{ GeV})$, lower x, larger y)

Collective elliptic flow

Lens-shaped spatial anisotropy (overlap) in non-central collisions translates

into boosted momentum emission along reaction plane:

- 1) Truly collective effect (absent in pp): pressure grads. in partonic phase (τ < 5 fm/c)
- 2) Note: Pure hadronic models predict small v₂ (~4%)
- 3) Note: Parton cascade w/ perturbative parton-parton σ ~3 mb predicts small v₂ (~5%)

APS Jacksonville, April 14, 2007

Strong elliptic flow at RHIC!

Large v₂ signal (~20%) for all hadrons: Reaches "hydro limit" (full thermalization)

(much larger than CERN-SPS)

• All hadron species, even heavy-flavor mesons (D,B), flow with the medium:

- ⇒ Strong partonic pressure grads.
- ⇒ Large & fast parton rescattering: early thermalization.
- ⇒ Low viscosity (no "internal dissipation")

Collective radial flow

• Bulk hadron (π^{\pm} , K^{\pm}, p, pbar) p_{τ} spectra up to ~2 GeV/c are boosted, for increasing centrality, with a (mass-dependent) collective radial flow:

"Explosive" behaviour well reproduced by hydrodynamics calculations w/ QGP Equationof-State and fast thermalization times

10² √s(AGeV)

sQGP: most ideal fluid known

 "Perfect fluid" (non-viscous) relativistic hydrodynamics w/ QGP (ε₀~30 GeV/fm³) & very fast thermalization times (τ_0 = 0.6 fm/c) reproduces radial & elliptic flows:

$$\partial_{\mu}T^{\mu\nu} = 0$$

$$\partial_{\mu}N_{i}^{\mu} = 0, \quad i = B, S, \dots$$

 $T^{\mu\nu}$ is energy-momentum tensor N_i^{μ} is charge 4-current, u^{μ} : collective 4-veloc. field

$$T^{\mu
u} = (\epsilon + P) u^{\mu} u^{
u} - P g^{\mu
u}$$
 (ideal fluid form) $N^{\mu} = n u^{\mu}$, $P = P(\pmb{\varepsilon}, n)
ightharpoonup {\sf QGP EoS}$

Inclusion of viscosity η term (shear stress) modifies expansion rate:

The "AdS/QGP" connection, heavy ions and string theory

- The argument goes as follows ...
- (1) "Anti-deSitter/ConformalFieldTheory correspondence" (Maldacena): Strongly coupled gauge theories (N=4 SUSY Yang-Mills, λ =g²N_c>>1) dual to (weakly coupled) 10-D gravity
- (2) The sQGP at RHIC is "strongly coupled" (it flows) \Rightarrow AdS/CFT applicable
- (3) Non-static QGP properties: η /s, <q> quenching parameter, heavy-Q diffusion coeffic, photon emission rates ... calculable from black-hole thermodynamics.

In particular: strong heavy-Q flow consistent with very low viscosity/entropy: $(\eta/s \sim 1/4\pi \text{ conjectured universal lower bound}).$

- Caveat: QCD ≠ (N=4) SUSY Yang-Mills! conformal, no running coupling constant, different degrees of freedom (no chiral-symmetry, spartners), ...
- Yet: "details" washed out at finite T and interesting phenomenological/ empirical insights gained from string-theory methods.

Hard probes of QCD matter

Use high- p_T hadrons, jets, prompt γ , heavy-quarks to probe the medium.

- 1. Early production ($\tau \sim 1/p_T < 0.1~fm/c$) in parton-parton scatterings with large Q^2
- 2. Calculable in pQCD. (If no medium effects, simply: $dN^{hard}_{AA} = N_{coll} \times d\sigma^{hard}_{pp}$)
- 3. "Calibrated" in reference measurements: pp (QCD "vacuum"), p(d)A (cold medium)
- 4. Measure medium properties:

- Thermodynamical: density, temperature,
 # degrees of freedom, ...
- Dynamical: viscosity, transport coefficient, quark diffusion parameter, ...

Baseline hard QCD results (pp, dAu @ 200 GeV)

"QCD vacuum" (pp):

 Hard pp cross-sections under experimental & theoretical (NLO, NLL) control:

Cold QCD medium (dAu):

 Small (~20%) cold nuclear matter effects: PDF shadowing, k_T broadening

"Jet quenching"

Produced hard partons lose energy by multiple final-state non-Abelian (gluon) radiation in the traversed dense medium

QCD energy loss ∞ medium properties:

GLV:
$$\Delta E \propto \alpha_S^3 C_R \frac{1}{A_\perp} \frac{dN^g}{dy} L \propto \text{(gluon density)}$$

BDMPS: $\langle \Delta E \rangle \propto \alpha_S C_R \langle \hat{q} \rangle L^2 \propto \text{(transport coeffic.)}$

Flavor-dependent energy loss:

$$\Delta E_{loss}(g) > \Delta E_{loss}(q) > \Delta E_{loss}(Q)$$
(color factor) (mass effect)

Energy carried away outside jet cone: dE/dx ~ α_s $\langle k^2_T \rangle$

Phenomenological implications:

- Suppression of high p_⊤ leading hadrons
- Disappearance of back-to-back (di)jet correlations ("monojets")

Suppressed high p_T hadroproduction in central AuAu

R_{AA} nuclear modification factor = "QCD medium"/ "QCD vacuum"

 $R_{AA} \sim 1$: Photon spectrum consistent with pQCD×N_{coll} (unaffected by FSI, AA = incoherent sum of pp)

 $R_{\Delta\Delta} \ll 1$: Hadrons well below pQCD expectations.

Energy-loss in dense medium: $dN^g/dy \sim 1100$, $<q>\sim 14 \text{ GeV}^2/\text{fm}$

[2002] Discovery of high p_T suppression (one of most significant results @ RHIC so far: 350+ citations)

Jets in AA collisions at RHIC

Full jet reconstruction w/ standard algorithms is unpractical at RHIC due to huge soft background ("underlying event") and low large-E_T jet cross sections

p+p \rightarrow jet+jet [\sqrt{s} = 200 GeV] STAR @ RHIC (2003) Au+Au \rightarrow X [$\sqrt{s_{NN}}$ = 200 GeV] STAR @ RHIC (2003)

APS Jacksonville, April 14, 2007

Bolek Wyslouch

High p_τ di-hadron Δφ correlations in pp,dAu

Two-particle correlations: $h^{\pm} - h^{\pm}$, $\pi^{0,\pm} - h^{\pm}$.

Trigger: highest p_⊤ (leading) hadron.

Associated $\Delta \phi$ distribution (e.g. $2 \text{ GeV/c} < p_T^{assoc} < p_T^{trigger}$)

Correlation function normalized to number of triggers:

$$C(\Delta \phi, \Delta \eta) = \frac{1}{N_{trig}} \frac{d^2 N_{pair}}{d\Delta \phi d\Delta \eta}$$

Clear near- $(\Delta \phi \sim 0)$ and away- $(\Delta \phi \sim \pi)$ side jet signals:

APS Jacksonville, April 14, 2007

Bolek Wyslouch

associated

(away-side)

associated

high p_T trigger

 $'_{\Delta 0}$ (near-side)

High p_T di-hadron Δφ correlations in central AuAu

"Lost" away-side energy dissipated at lower p_⊤ values. Away-side $\Delta \phi$ peak splits in two with increasing centrality:

QQbar suppression = Colour screening

Heuristic argument (Matsui-Satz 1986):

- Colour screening in a deconfined plasma dissolves QQbar
- Different bound states "melt" at different

temperatures due to their different binding radius:

QQbar "thermometer"

Screening length λ_D vs. T:

Lattice QCD calculations:

 ψ' , χ_c dissolve arount T_c , J/ψ survives until $2T_c$, Υ may survive up to LHC energies

J/ψ suppression at SPS and RHIC

J/ ψ suppression vs. centrality (N_{part}):

Same suppression observed at RHIC (T~400 MeV) & SPS (T~200 MeV) !?

Recombination:

ccbar regeneration (10 ccbar pairs in central AuAu!) compensates for screening?

Sequential dissociation:

Only ψ ' and χ_c (~40% feed-down J/ ψ) melt.

Direct J/ ψ survives at RHIC $T_0 < \sim 2 \cdot T_c$

Large Hadron Collider (LHC) @ CERN

Specifications:

26.66 km circumference

1 ring:

8.33 T superconducting coils

25 ns crossing time (40 MHz)

pp luminosity: 10³⁴ cm⁻² s⁻¹ (10⁷ s/year)

AA luminosity: 10²⁷ cm⁻² s⁻¹ (10⁶ s/year)

3 heavy-ion experiments:

ALICE, ATLAS, CMS

First runs:

pp @ 14 TeV (2007 pilot, 2008)

PbPb @ 5.5 TeV (2008: early cfg.,

2009 std. cfg.)

pPb @ 8.8 TeV (2010?)

Bolek Wyslouch

The 3 LHC heavy-ion experiments

- ALICE: dedicated HI experiment
- Largest HI community (~1000)
- Tracking (|η|<1-2): TPC + ITS + TRD
- 0.5 T solenoid magnet
- EMCal under discussion
- Forward muon spectrometer
- Strongest capabilities:
 low-p_T, light-quark PID, ...

- ATLAS & CMS: multipurpose (pp) + HI program
- People: ~50/2000 (ATLAS), ~70/2300 (CMS)
- |η|<2.5: Full tracking, muons
- |η|<5: Calorimetry
- 4 T (CMS), 2 T (ATLAS) mag. field

- Forward detectors (CMS)
- Strongest capabilities: hard-probes, Y, full jet reco, heavy-Q jet PID, jet-Z,γ

LHC: new regime for QGP studies

X 28

x 2-3

faster

hotter

denser

longer

bigger

Produced quark-gluon matter: hotter, denser, bigger, longer lifetime

	SPS	RHIC	LHC
$\sqrt{s_{NN}}$ (GeV)	17	200	5500
dN _{ch} /dy	500	850	1500- 3000
$ au_{QGP}^0(fm/c)$	1	0.2	0.1
T/T_c	1.1	1.9	3.0-4.2
ϵ (GeV/fm ³)	3	5	15-60
$\tau_{QGP} (fm/c)$	≤2	2-4	≥10
$\tau_{\rm f}({\rm fm/c})$	~10	20-30	30-40
$V_f(fm^3)$	few 10 ³	few 10 ⁴	few 10 ⁵

Very large pQCD cross-sections: well calibrated probes of QCD medium.

Different plasma ? Liquid- (RHIC) to gas-like (LHC) transition ?

LHC: New low-x QCD regime

- PbPb @ 5.5 TeV, pPb @ 8.8 TeV:
 - (i) Bjorken x=2p_T/ \sqrt{s} , ~30-45 times smaller x than AuAu,dAu @ RHIC
 - (ii) Very large perturbative (jets, QQbar, DY, high-p_⊤) cross-sections.
 - (iii) Forward detectors allows for measurements down to x~10⁻⁶!

Summary

- High-energy colls. of heavy-ions study QCD in extreme conditions of Density, Temperature and small-x
- QCD phase diagram explored:
 - SPS: close to phase boundary (T₀~200 MeV)
 - J/Ψ suppressed, ρ broadened, ...
 - ➤ RHIC:
 - Initial-state = Color Glass Condensate (saturated xG)
 - Strongly coupled QGP (large partonic flows) viscosity/entropy~1/4p
 - Very dense system ("jet quenching"): dN_g/dy~1000, <q>~14 GeV²/fm, <c_s>~0.3 (?)
 - \rightarrow Hot medium (J/Ψ suppressed, thermal g?) $T_0 \sim 2 \cdot T_c \sim 400$ MeV
- <u>LHC</u>: weakly coupled QGP ? strong CGC effects ? ...